James La Clair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717871/publications.pdf Version: 2024-02-01

IMMES LA CLAID

#	Article	IF	CITATIONS
1	Charting the Complexity of the Marine Microbiome through Single-Cell Genomics. Cell, 2019, 179, 1623-1635.e11.	28.9	158
2	Manipulation of Carrier Proteins in Antibiotic Biosynthesis. Chemistry and Biology, 2004, 11, 195-201.	6.0	138
3	Marinopyrrole A Target Elucidation by Acyl Dye Transfer. Journal of the American Chemical Society, 2009, 131, 12094-12096.	13.7	106
4	Ammosamidesâ€A and B Target Myosin. Angewandte Chemie - International Edition, 2009, 48, 728-732.	13.8	99
5	In Vivo Reporter Labeling of Proteins via Metabolic Delivery of Coenzyme A Analogues. Journal of the American Chemical Society, 2005, 127, 11234-11235.	13.7	98
6	RNA Splicing Modulation Selectively Impairs Leukemia Stem Cell Maintenance in Secondary Human AML. Cell Stem Cell, 2016, 19, 599-612.	11.1	97
7	Unraveling the Role of Linker Design in Proteolysis Targeting Chimeras. Journal of Medicinal Chemistry, 2021, 64, 8042-8052.	6.4	87
8	Inhibitors of the AAA+ Chaperone p97. Molecules, 2015, 20, 3027-3049.	3.8	83
9	Targeting the spliceosome in chronic lymphocytic leukemia with the macrolides FD-895 and pladienolide-B. Haematologica, 2015, 100, 945-954.	3.5	73
10	A Central Strategy for Converting Natural Products into Fluorescent Probes. ChemBioChem, 2006, 7, 409-416.	2.6	72
11	Seriniquinone, a selective anticancer agent, induces cell death by autophagocytosis, targeting the cancer-protective protein dermcidin. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14687-14692.	7.1	50
12	Ganodone, a Bioactive Benzofuran from the Fruiting Bodies of <i>Ganoderma tsugae</i> . Journal of Natural Products, 2011, 74, 2045-2051.	3.0	48
13	Identification of the Binding of Sceptrin to MreB via a Bidirectional Affinity Protocol. Journal of the American Chemical Society, 2008, 130, 7256-7258.	13.7	44
14	Covalent modification of biological targets with natural products through Paal–Knorr pyrrole formation. Natural Product Reports, 2017, 34, 1051-1060.	10.3	44
15	Gating mechanism of elongating \hat{I}^2 -ketoacyl-ACP synthases. Nature Communications, 2020, 11, 1727.	12.8	44
16	Structure of FD-895 Revealed through Total Synthesis. Organic Letters, 2012, 14, 5396-5399.	4.6	43
17	Total Syntheses of Hexacyclinol, 5-epi-Hexacyclinol, and Desoxohexacyclinol Unveil an Antimalarial Prodrug Motif. Angewandte Chemie - International Edition, 2006, 45, 2769-2773.	13.8	41
18	Natural product mode of action (MOA) studies: a link between natural and synthetic worlds. Natural Product Reports, 2010, 27, 969.	10.3	41

#	Article	IF	CITATIONS
19	A synthetic entry to pladienolide B and FD-895. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 5159-5164.	2.2	39
20	Phorboxazole Analogues Induce Association of cdk4 with Extranuclear Cytokeratin Intermediate Filaments. Journal of the American Chemical Society, 2006, 128, 3858-3859.	13.7	36
21	Modular Synthesis of Pantetheine and Phosphopantetheine. Organic Letters, 2004, 6, 4801-4803.	4.6	34
22	A Challenging Pie to Splice: Drugging the Spliceosome. Angewandte Chemie - International Edition, 2017, 56, 12052-12063.	13.8	32
23	Lessons in Organic Fluorescent Probe Discovery. ChemBioChem, 2021, 22, 3109-3139.	2.6	31
24	Metabolic and Biosynthetic Diversity in Marine Myxobacteria. Marine Drugs, 2018, 16, 314.	4.6	30
25	An Optimized Immunoaffinity Fluorescent Method for Natural Product Target Elucidation. Journal of Natural Products, 2010, 73, 1659-1666.	3.0	29
26	Stabilized Cyclopropane Analogs of the Splicing Inhibitor FD-895. Journal of Medicinal Chemistry, 2013, 56, 6576-6582.	6.4	28
27	Metabolite Induction of <i>Caenorhabditis elegans</i> Dauer Larvae Arises via Transport in the Pharynx. ACS Chemical Biology, 2008, 3, 294-304.	3.4	23
28	Trapping of the Enoyl-Acyl Carrier Protein Reductase–Acyl Carrier Protein Interaction. Journal of the American Chemical Society, 2016, 138, 3962-3965.	13.7	23
29	Functional Chromatography Reveals Three Natural Products that Target the Same Protein with Distinct Mechanisms of Action. ChemBioChem, 2014, 15, 2125-2131.	2.6	21
30	Ritterostatin G _N 1 _N , a Cephalostatin–Ritterazine Bisâ€steroidal Pyrazine Hybrid, Selectively Targets GRP78. ChemBioChem, 2017, 18, 506-510.	2.6	21
31	Future Directions of Marine Myxobacterial Natural Product Discovery Inferred from Metagenomics. Marine Drugs, 2018, 16, 303.	4.6	21
32	Synthesis and Evaluation of a Fluorescent Ritterazine–Cephalostatin Hybrid. Organic Letters, 2011, 13, 5334-5337.	4.6	20
33	Bioinspired Chemoenzymatic Route to Artificial Melanin for Hair Pigmentation. Chemistry of Materials, 2020, 32, 9201-9210.	6.7	20
34	Selectivity in Small Molecule Splicing Modulation. ACS Chemical Biology, 2016, 11, 2716-2723.	3.4	19
35	Harvesting the biosynthetic machineries that cultivate a variety of indispensable plant natural products. Current Opinion in Chemical Biology, 2016, 31, 66-73.	6.1	18
36	Polyketide mimetics yield structural and mechanistic insights into product template domain function in nonreducing polyketide synthases. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E4142-E4148.	7.1	18

#	Article	IF	CITATIONS
37	Chemoenzymatic elaboration of the Raper–Mason pathway unravels the structural diversity within eumelanin pigments. Chemical Science, 2020, 11, 7836-7841.	7.4	17
38	Traceless Staudinger ligation enabled parallel synthesis of proteolysis targeting chimera linker variants. Chemical Communications, 2021, 57, 1026-1029.	4.1	17
39	Spirohexenolide A Targets Human Macrophage Migration Inhibitory Factor (hMIF). Journal of Natural Products, 2013, 76, 817-823.	3.0	16
40	The Hybrid Pyrroloisoindolone–Dehydropyrrolizine Alkaloid (â^') hlorizidine A Targets Proteins within the Glycolytic Pathway. ChemBioChem, 2015, 16, 2002-2006.	2.6	15
41	Advance of Seriniquinone Analogues as Melanoma Agents. ACS Medicinal Chemistry Letters, 2019, 10, 186-190.	2.8	14
42	Exploring the benefits of nanotechnology for cancer drugs in different stages of the drug development pipeline. Nanomedicine, 2020, 15, 2539-2542.	3.3	14
43	Structural Basis of Acyl-Carrier Protein Interactions in Fatty Acid and Polyketide Biosynthesis. , 2020, , 61-122.		14
44	Geometry in digital molecular arrays. Organic and Biomolecular Chemistry, 2006, 4, 3052.	2.8	13
45	Structural basis for differential recognition of phosphohistidine-containing peptides by 1-pHis and 3-pHis monoclonal antibodies. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
46	Identification of Pyrroloformamide as a Cytokinesis Modulator. ChemBioChem, 2014, 15, 501-506.	2.6	12
47	Fluorescent kapakahines serve as non-toxic probes for live cell Golgi imaging. Life Sciences, 2015, 136, 163-167.	4.3	12
48	Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angewandte Chemie - International Edition, 2018, 57, 17009-17013.	13.8	12
49	Aplysqualenolâ€A Binds to the Light Chain of Dynein Typeâ€1 (DYNLL1). Angewandte Chemie - International Edition, 2011, 50, 8134-8138.	13.8	11
50	Napyradiomycins CNQ525.510B and A80915C target the Hsp90 paralogue Grp94. Organic and Biomolecular Chemistry, 2014, 12, 418-423.	2.8	11
51	Irreversible Protein Labeling by Paal–Knorr Conjugation. ChemBioChem, 2017, 18, 1792-1796.	2.6	11
52	Bifunctional Substrate Activation via an Arginine Residue Drives Catalysis in Chalcone Isomerases. ACS Catalysis, 2019, 9, 8388-8396.	11.2	11
53	Functional chromatographic technique for natural product isolation. Organic and Biomolecular Chemistry, 2015, 13, 2255-2259.	2.8	10
54	Fluorescent Mechanismâ€Based Probe for Aerobic Flavinâ€Dependent Enzyme Activity. ChemBioChem, 2016, 17, 1598-1601.	2.6	10

#	Article	IF	CITATIONS
55	A Carbohydrate-Derived Splice Modulator. Journal of the American Chemical Society, 2016, 138, 5063-5068.	13.7	10
56	Tailoring chemoenzymatic oxidation via in situ peracids. Organic and Biomolecular Chemistry, 2019, 17, 9418-9424.	2.8	9
57	In Situ Natural Product Discovery via an Artificial Marine Sponge. PLoS ONE, 2014, 9, e100474.	2.5	8
58	Encoding matter with regiospecific ¹² C/ ¹³ C isotopic labels. Chemical Communications, 2018, 54, 2611-2614.	4.1	7
59	Isolation of the β-galactosphingolipid coniferoside using a tumor cell proteome reverse affinity protocol. Bioorganic and Medicinal Chemistry, 2011, 19, 6645-6653.	3.0	6
60	Single dish gradient screening of small molecule localization. Organic and Biomolecular Chemistry, 2016, 14, 8241-8245.	2.8	6
61	Scalable Synthesis of 17S-FD-895 Expands the Structural Understanding of Splice Modulatory Activity. Cell Reports Physical Science, 2020, 1, 100277.	5.6	6
62	Color oded Superâ€Resolution Smallâ€Molecule Imaging. ChemBioChem, 2016, 17, 999-1003.	2.6	5
63	An unusual intramolecular trans-amidation. Tetrahedron, 2016, 72, 3605-3608.	1.9	4
64	Searching for Small Molecules with an Atomic Sort. Angewandte Chemie - International Edition, 2020, 59, 1144-1148.	13.8	4
65	A fluorescent target-guided Paal–Knorr reaction. RSC Advances, 2020, 10, 37035-37039.	3.6	4
66	Plant-based CO ₂ drawdown and storage as SiC. RSC Advances, 2021, 11, 15512-15518.	3.6	4
67	Synthase-Selective Exploration of a Tunicate Microbiome by Activity-Guided Single-Cell Genomics. ACS Chemical Biology, 2021, 16, 813-819.	3.4	4
68	Seriniquinones as Therapeutic Leads for Treatment of BRAF and NRAS Mutant Melanomas. Molecules, 2021, 26, 7362.	3.8	4
69	Affinity Analyses on Moldable Optical Polycarbonate. ChemBioChem, 2008, 9, 201-205.	2.6	3
70	Trapping the Complex Molecular Machinery of Polyketide and Fatty Acid Synthases with Tunable Silylcyanohydrin Crosslinkers. Angewandte Chemie, 2018, 130, 17255-17259.	2.0	3
71	Splice Modulation Synergizes Cell Cycle Inhibition. ACS Chemical Biology, 2020, 15, 669-674.	3.4	3
72	A two-step resin based approach to reveal survivin-selective fluorescent probes. RSC Chemical Biology, 2021, 2, 181-186.	4.1	3

#	Article	IF	CITATIONS
73	Three-component assembly of stabilized fluorescent isoindoles. RSC Advances, 2022, 12, 6947-6950.	3.6	3
74	Modulation of RNA splicing associated with Wnt signaling pathway using FD-895 and pladienolide B. Aging, 2022, 14, 2081-2100.	3.1	3
75	Daedal Facets of Splice Modulator Optimization. ACS Medicinal Chemistry Letters, 2018, 9, 1070-1072.	2.8	2
76	Accessing Nystatin through Mariculture. Molecules, 2021, 26, 7649.	3.8	2
77	Preclinical Development of Seriniquinones as Selective Dermcidin Modulators for the Treatment of Melanoma. Marine Drugs, 2022, 20, 301.	4.6	2
78	Cyberpills. ChemBioChem, 2001, 2, 465-468.	2.6	1
79	Searching for Small Molecules with an Atomic Sort. Angewandte Chemie, 2020, 132, 1160-1164.	2.0	1
80	RNA Splicing Modulation Impairs Acute Myeloid Leukemia Stem Cell Maintenance. Blood, 2015, 126, 567-567.	1.4	1
81	Cellular routines in the synthesis of cyclic peptide probes. Tetrahedron, 2006, 62, 5347-5354.	1.9	0
82	Das Spliceosom als Angriffspunkt für Pharmaka. Angewandte Chemie, 2017, 129, 12218-12230.	2.0	0
83	A Cyclopropane-Derived Stable Analog Of Fd-895 Induces Apoptosis and Inhibition Of mRNA Splicing In Lymphoma and Chronic Lymphocytic Leukemia: A Novel Therapeutic Approach. Blood, 2013, 122, 2884-2884.	1.4	0
84	Deregulation of Splicing in Pediatric Acute Myeloid Stem and Progenitor Cells. Blood, 2021, 138, 2227-2227.	1.4	0
85	ADAR1 Splicing Modulation As a Mechanism to Eradicate Immunologically Silent Leukemia Stem Cells. Blood, 2021, 138, 3321-3321.	1.4	0
86	Chemoenzymatic Isolation and Characterization of High Purity Mammalian Melanin. ChemBioChem, 2022, 23, e202200021.	2.6	0