
Lu Wei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7178605/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydrothermal Carbonization of Abundant Renewable Natural Organic Chemicals for Highâ€Performance Supercapacitor Electrodes. Advanced Energy Materials, 2011, 1, 356-361.	10.2	538
2	Nanostructured activated carbons from natural precursors for electrical double layer capacitors. Nano Energy, 2012, 1, 552-565.	8.2	468
3	Polypyrroleâ€Derived Activated Carbons for Highâ€Performance Electrical Double‣ayer Capacitors with Ionic Liquid Electrolyte. Advanced Functional Materials, 2012, 22, 827-834.	7.8	396
4	Ionic Conduction in Composite Polymer Electrolytes: Case of PEO:Ga-LLZO Composites. ACS Applied Materials & Interfaces, 2019, 11, 784-791.	4.0	250
5	Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries. ACS Applied Materials & Interfaces, 2017, 9, 12461-12468.	4.0	179
6	Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chemical Engineering Journal, 2020, 383, 123098.	6.6	133
7	Electrical double layer capacitors with sucrose derived carbon electrodes in ionic liquid electrolytes. Journal of Power Sources, 2011, 196, 4072-4079.	4.0	105
8	Ultrathin mesoporous NiMoO4-modified MoO3 core/shell nanostructures: Enhanced capacitive storage and cycling performance for supercapacitors. Chemical Engineering Journal, 2018, 353, 615-625.	6.6	95
9	Lithographically Patterned Thin Activated Carbon Films as a New Technology Platform for On-Chip Devices. ACS Nano, 2013, 7, 6498-6506.	7.3	90
10	Electrical double layer capacitors with activated sucrose-derived carbon electrodes. Carbon, 2011, 49, 4830-4838.	5.4	85
11	Bio-inspired high-performance solid-state supercapacitors with the electrolyte, separator, binder and electrodes entirely from <i>kelp</i> . Journal of Materials Chemistry A, 2017, 5, 25282-25292.	5.2	85
12	Printable Zinc-Ion Hybrid Micro-Capacitors for Flexible Self-Powered Integrated Units. Nano-Micro Letters, 2021, 13, 19.	14.4	81
13	Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors. Journal of Materials Chemistry A, 2016, 4, 15968-15979.	5.2	80
14	Silverâ€Quantumâ€Dotâ€Modified MoO ₃ and MnO ₂ Paperâ€Like Freestanding Films f Flexible Solidâ€State Asymmetric Supercapacitors. Small, 2019, 15, e1805235.	or 5.2	79
15	3D Porous Hierarchical Microspheres of Activated Carbon from Nature through Nanotechnology for Electrochemical Double-Layer Capacitors. ACS Sustainable Chemistry and Engineering, 2016, 4, 6463-6472.	3.2	51
16	High-performance, flexible, solid-state micro-supercapacitors based on printed asymmetric interdigital electrodes and bio-hydrogel for on-chip electronics. Journal of Power Sources, 2019, 422, 73-83.	4.0	46
17	Waste biomass valorization through production of xylose-based porous carbon microspheres for supercapacitor applications. Waste Management, 2020, 105, 492-500.	3.7	41
18	Nonflammable quasi-solid electrolyte for energy-dense and long-cycling lithium metal batteries with high-voltage Ni-rich layered cathodes. Energy Storage Materials, 2022, 47, 542-550.	9.5	34

Lu Wei

#	Article	IF	CITATIONS
19	MOF-derived porous hollow α-Fe2O3 microboxes modified by silver nanoclusters for enhanced pseudocapacitive storage. Applied Surface Science, 2019, 463, 616-625.	3.1	33
20	Mesoporous NiMoO4 microspheres decorated by Ag quantum dots as cathode material for asymmetric supercapacitors: Enhanced interfacial conductivity and capacitive storage. Applied Surface Science, 2020, 505, 144513.	3.1	33
21	Three-dimensional porous hollow microspheres of activated carbon for high-performance electrical double-layer capacitors. Microporous and Mesoporous Materials, 2016, 227, 210-218.	2.2	32
22	In-plane flexible solid-state microsupercapacitors for on-chip electronics. Energy, 2019, 170, 338-348.	4.5	28
23	Hybrid electrolytes with an ultrahigh Li-ion transference number for lithium-metal batteries with fast and stable charge/discharge capability. Journal of Materials Chemistry A, 2021, 9, 18239-18246.	5.2	25
24	Membranes of carbon nanofibers with embedded MoO 3 nanoparticles showing superior cycling performance for all-solid-state flexible supercapacitors. Materials Today Energy, 2017, 6, 27-35.	2.5	24
25	Customizable solid-state batteries toward shape-conformal and structural power supplies. Materials Today, 2022, 58, 297-312.	8.3	11
26	Ten micrometer thick polyethylene separator modified by α-LiAlO2@γ-Al2O3 nanosheets for simultaneous suppression of Li dendrite growth and polysulfide shuttling in Li-S batteries. Materials Today Energy, 2022, 26, 100990.	2.5	9
27	Controllable construction of hierarchically porous carbon composite of nanosheet network for advanced dual-carbon potassium-ion capacitors. Journal of Colloid and Interface Science, 2022, 621, 169-179.	5.0	9
28	Ultravioletâ€Cured Semiâ€Interpenetrating Network Polymer Electrolytes for Highâ€Performance Quasiâ€Solidâ€State Lithium Metal Batteries. Chemistry - A European Journal, 2021, 27, 7773-7780.	1.7	8
29	Capacitive Energy Storage. World Scientific Series in Current Energy Issues, 2017, , 167-214.	0.1	5
30	Carbons from Biomass for Electrochemical Capacitors. Biofuels and Biorefineries, 2019, , 153-184.	0.5	2
31	Capacitive Electric Storage. Materials and Energy, 2013, , 373-404.	2.5	1
32	Capacitive Energy Storage. World Scientific Series in Current Energy Issues, 2017, , 167-214.	0.1	0