
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7178203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomimetic Scaffolds with a Mineral Gradient and Funnelâ€5haped Channels for Spatially Controllable Osteogenesis. Advanced Healthcare Materials, 2022, 11, e2100828.	7.6	8
2	Bimetallic Janus Nanocrystals: Syntheses and Applications. Advanced Materials, 2022, 34, e2102591.	21.0	55
3	Accelerating Cell Migration along Radially Aligned Nanofibers through the Addition of Electrosprayed Nanoparticles in a Radial Density Gradient. Particle and Particle Systems Characterization, 2022, 39, .	2.3	8
4	The use of connective tissue growth factor mimics for flexor tendon repair. Journal of Orthopaedic Research, 2022, 40, 2754-2762.	2.3	1
5	Using computational methods to design patient-specific electrospun cardiac patches for pediatric heart failure. Biomaterials, 2022, 283, 121421.	11.4	2
6	Gold Nanostrip Arrayâ€Mediated Wireless Electrical Stimulation for Accelerating Functional Neuronal Differentiation. Advanced Science, 2022, 9, .	11.2	11
7	Polystyreneâ€Silica Colloidal Janus Particles with Uniform Shapes and Complex Structures. Particle and Particle Systems Characterization, 2022, 39, .	2.3	2
8	Highly specific differentiation of MSCs into neurons directed by local electrical stimuli triggered wirelessly by electromagnetic induction nanogenerator. Nano Energy, 2022, 100, 107483.	16.0	13
9	Nanobottles for Controlled Release and Drug Delivery. Advanced Healthcare Materials, 2021, 10, 2000587.	7.6	20
10	Augmenting Tendonâ€ŧoâ€Bone Repair with Functionally Graded Scaffolds. Advanced Healthcare Materials, 2021, 10, e2002269.	7.6	34
11	Swellingâ€Induced Symmetry Breaking: A Versatile Approach to the Scalable Production of Colloidal Particles with a Janus Structure. Angewandte Chemie, 2021, 133, 13090-13094.	2.0	7
12	Swellingâ€Induced Symmetry Breaking: A Versatile Approach to the Scalable Production of Colloidal Particles with a Janus Structure. Angewandte Chemie - International Edition, 2021, 60, 12980-12984.	13.8	28
13	Polydopamine Nanobottles with Photothermal Capability for Controlled Release and Related Applications. Advanced Materials, 2021, 33, e2104729.	21.0	31
14	Radiolabeling of Gold Nanocages for Potential Applications in Tracking, Diagnosis, and Imageâ€Guided Therapy. Advanced Healthcare Materials, 2021, 10, e2002031.	7.6	16
15	Gold nanocages for effective photothermal conversion and related applications. Chemical Science, 2020, 11, 12955-12973.	7.4	46
16	Promoting Cell Migration and Neurite Extension along Uniaxially Aligned Nanofibers with Biomacromolecular Particles in a Density Gradient. Advanced Functional Materials, 2020, 30, 2002031.	14.9	43
17	Phaseâ€Change Materials for Controlled Release and Related Applications. Advanced Materials, 2020, 32, e2000660.	21.0	140
18	Killing cancer cells by rupturing their lysosomes. Nature Nanotechnology, 2020, 15, 252-253.	31.5	33

#	Article	IF	CITATIONS
19	Spatiotemporally Controlling the Release of Biological Effectors Enhances Their Effects on Cell Migration and Neurite Outgrowth. Small Methods, 2020, 4, 2000125.	8.6	17
20	Continuous Production of Waterâ€Soluble Nanocrystals through Antiâ€Solvent Precipitation in a Fluidic Device. ChemNanoMat, 2019, 5, 1131-1136.	2.8	3
21	Direct Visualization and Semiâ€Quantitative Analysis of Payload Loading in the Case of Gold Nanocages. Angewandte Chemie, 2019, 131, 17835-17838.	2.0	0
22	Direct Visualization and Semiâ€Quantitative Analysis of Payload Loading in the Case of Gold Nanocages. Angewandte Chemie - International Edition, 2019, 58, 17671-17674.	13.8	9
23	General Approach to the Synthesis of Heterodimers of Metal Nanoparticles through Site-Selected Protection and Growth. Nano Letters, 2019, 19, 6703-6708.	9.1	51
24	Identification of surface-passivating ligands and core-size-dependent CdSe/CdZnS with highly emitting for cell labeling. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 112, 142-148.	2.7	1
25	Encapsulation of a Phase hange Material in Nanocapsules with a Wellâ€Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie - International Edition, 2019, 58, 10606-10611.	13.8	102
26	Encapsulation of a Phaseâ€Change Material in Nanocapsules with a Wellâ€Defined Hole in the Wall for the Controlled Release of Drugs. Angewandte Chemie, 2019, 131, 10716-10721.	2.0	87
27	Au@Cu Core–Shell Nanocubes with Controllable Sizes in the Range of 20–30 nm for Applications in Catalysis and Plasmonics. ACS Applied Nano Materials, 2019, 2, 1533-1540.	5.0	22
28	Synthesis, Transformation, and Utilization of Monodispersed Colloidal Spheres. Accounts of Chemical Research, 2019, 52, 3475-3487.	15.6	44
29	Polylactic Acid Nanopillar Array-Driven Osteogenic Differentiation of Human Adipose-Derived Stem Cells Determined by Pillar Diameter. Nano Letters, 2018, 18, 2243-2253.	9.1	92
30	Tissue Regeneration: Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€ŧoâ€Bone Repair (Adv. Mater. 16/2018). Advanced Materials, 2018, 30, 1870116.	21.0	15
31	Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells. Applied Materials Today, 2018, 10, 164-172.	4.3	37
32	Killing two birds with one stone: To eliminate the toxicity and enhance the photocatalytic property of CdS nanobelts by assembling ultrafine TiO2 nanowires on them. Solar Energy Materials and Solar Cells, 2018, 183, 41-47.	6.2	50
33	Design and Fabrication of a Hierarchically Structured Scaffold for Tendonâ€ŧoâ€Bone Repair. Advanced Materials, 2018, 30, e1707306.	21.0	82
34	Mass-production of fluorescent chitosan/graphene oxide hybrid microspheres for in vitro 3D expansion of human umbilical cord mesenchymal stem cells. Chemical Engineering Journal, 2018, 331, 675-684.	12.7	28
35	Inverse Opal Scaffolds with Gradations in Mineral Content for Spatial Control of Osteogenesis. Advanced Materials, 2018, 30, e1706706.	21.0	30
36	Terbium–Aspartic Acid Nanocrystals with Chirality-Dependent Tunable Fluorescent Properties. ACS Nano, 2017, 11, 1973-1981.	14.6	27

#	Article	IF	CITATIONS
37	A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissueâ€Engineered 3D Scaffold. Advanced Biology, 2017, 1, e1600042.	3.0	45
38	Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale, 2017, 9, 10031-10037.	5.6	9
39	TiO ₂ nanorod arrays as a photocatalytic coating enhanced antifungal and antibacterial efficiency of Ti substrates. Nanomedicine, 2017, 12, 761-776.	3.3	22
40	Growth and accelerated differentiation of mesenchymal stem cells on graphene-oxide-coated titanate with dexamethasone on surface of titanium implants. Dental Materials, 2017, 33, 525-535.	3.5	53
41	TiO2 nanorod arrays modified Ti substrates promote the adhesion, proliferation and osteogenic differentiation of human periodontal ligament stem cells. Materials Science and Engineering C, 2017, 76, 684-691.	7.3	38
42	Nanostructured titanium foam with metal ions incorporation for promoting osteogenic differentiation of mesenchymal stem cells. Journal of Alloys and Compounds, 2017, 729, 816-822.	5.5	6
43	Graphene microfiber as a scaffold for regulation of neural stem cells differentiation. Scientific Reports, 2017, 7, 5678.	3.3	67
44	Prolonged fluorescence lifetime of carbon quantum dots by combining with hydroxyapatite nanorods for bio-applications. Nanoscale, 2017, 9, 2162-2171.	5.6	37
45	A novel aptameric biosensor based on the self-assembled DNA–WS2 nanosheet architecture. Talanta, 2017, 163, 78-84.	5.5	26
46	A titanium dioxide nanorod array as a high-affinity nano-bio interface of a microfluidic device for efficient capture of circulating tumor cells. Nano Research, 2017, 10, 776-784.	10.4	22
47	Effects of Graphene Quantum Dots on the Selfâ€Renewal and Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials, 2016, 5, 702-710.	7.6	103
48	Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for Highâ€Performance, Selfâ€Powered, Wireless UV Photodetector. Small, 2016, 12, 2759-2767.	10.0	66
49	Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor. Nanoscale, 2016, 8, 9382-9389.	5.6	39
50	Specific detection of potassium ion in serum by a modified G-quadruplex method. RSC Advances, 2016, 6, 41999-42007.	3.6	13
51	Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene–Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano, 2016, 10, 5086-5095.	14.6	249
52	Bright YAG:Ce Nanorod Phosphors Prepared via a Partial Wet Chemical Route and Biolabeling Applications. ACS Applied Materials & Interfaces, 2016, 8, 11990-11997.	8.0	26
53	Eu/Tb codoped spindle-shaped fluorinated hydroxyapatite nanoparticles for dual-color cell imaging. Nanoscale, 2016, 8, 11580-11587.	5.6	41
54	Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano, 2016, 10, 7094-7105.	14.6	97

#	Article	IF	CITATIONS
55	TiO ₂ Nanorod Array Constructed Nanotopography for Regulation of Mesenchymal Stem Cells Fate and the Realization of Locationâ€Committed Stem Cell Differentiation. Small, 2016, 12, 1770-1778.	10.0	57
56	Localized committed differentiation of neural stem cells based on the topographical regulation effects of TiO ₂ nanostructured ceramics. Nanoscale, 2016, 8, 13186-13191.	5.6	11
57	Cellular internalization of LiNbO ₃ nanocrystals for second harmonic imaging and the effects on stem cell differentiation. Nanoscale, 2016, 8, 7416-7422.	5.6	21
58	Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8, 1897-1904.	5.6	127
59	An Impedimetricâ€Fluorescence Doubleâ€Checking Biosensor with Enhanced Reliability Based on Graphene Oxide. Advanced Materials Interfaces, 2015, 2, 1500279.	3.7	3
60	Scaly Graphene Oxide/Graphite Fiber Hybrid Electrodes for DNA Biosensors. Advanced Materials Interfaces, 2015, 2, 1500072.	3.7	8
61	Fluorescent graphene quantum dots as traceable, pH-sensitive drug delivery systems. International Journal of Nanomedicine, 2015, 10, 6709.	6.7	79
62	Surface Charge Regulation of Osteogenic Differentiation of Mesenchymal Stem Cell on Polarized Ferroelectric Crystal Substrate. Advanced Healthcare Materials, 2015, 4, 998-1003.	7.6	79
63	NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy, 2015, 16, 207-217.	16.0	136
64	Sustained delivery of BMP-2 enhanced osteoblastic differentiation of BMSCs based on surface hydroxyapatite nanostructure in chitosan–HAp scaffold. Journal of Biomaterials Science, Polymer Edition, 2014, 25, 1813-1827.	3.5	29
65	Nanostructured Titanate with Different Metal Ions on the Surface of Metallic Titanium: A Facile Approach for Regulation of rBMSCs Fate on Titanium Implants. Small, 2014, 10, 3169-3180.	10.0	49
66	Biopolymer/Calcium Phosphate Scaffolds for Bone Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 469-484.	7.6	97
67	Highly biocompatible POSS-coated CdTe quantum dots for cell labeling. RSC Advances, 2014, 4, 598-604.	3.6	9
68	Carbodiimide crosslinked collagen from porcine dermal matrix for high-strength tissue engineering scaffold. International Journal of Biological Macromolecules, 2013, 61, 69-74.	7.5	56
69	In vitro Investigation on the Biodegradability and Biocompatibility of Genipin Cross-linked Porcine Acellular Dermal Matrix with Intrinsic Fluorescence. ACS Applied Materials & Interfaces, 2013, 5, 344-350.	8.0	36
70	Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility. International Journal of Nanomedicine, 2013, 8, 3415.	6.7	64