Jose V Garcia-Perez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7178004/publications.pdf

Version: 2024-02-01

100 papers 4,954 citations

39 h-index 98622 67 g-index

123 all docs

123 docs citations

times ranked

123

3550 citing authors

#	Article	IF	CITATIONS
1	Ultrasound-Assisted Extraction of Natural Products. Food Engineering Reviews, 2011, 3, 108-120.	3.1	334
2	Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 2012, 110, 200-207.	2.7	244
3	Preparation of high dietary fiber powder from lemon juice by-products1. Innovative Food Science and Emerging Technologies, 2004, 5, 113-117.	2.7	175
4	Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 2014, 129, 21-29.	2.7	172
5	Kinetic and compositional study of phenolic extraction from olive leaves (var. Serrana) by using power ultrasound. Innovative Food Science and Emerging Technologies, 2013, 17, 120-129.	2.7	166
6	Influence of High-Intensity Ultrasound on Drying Kinetics of Persimmon. Drying Technology, 2007, 25, 185-193.	1.7	156
7	Influence of the Applied Acoustic Energy on the Drying of Carrots and Lemon Peel. Drying Technology, 2009, 27, 281-287.	1.7	149
8	Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 2007, 85, 247-254.	1.8	145
9	Ultrasonic drying of foodstuff in a fluidized bed: Parametric study. Ultrasonics, 2006, 44, e539-e543.	2.1	141
10	Influence of high intensity ultrasound application on mass transport, microstructure and textural properties of pork meat (Longissimus dorsi) brined at different NaCl concentrations. Journal of Food Engineering, 2013, 119, 84-93.	2.7	141
11	Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 2014, 128, 132-139.	2.7	131
12	Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 2012, 5, 2256-2265.	2.6	121
13	Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 2011, 29, 174-182.	1.7	98
14	Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 2012, 90, 624-632.	1.8	91
15	Effect of proteolysis index level on instrumental adhesiveness, free amino acids content and volatile compounds profile of dry-cured ham. Food Research International, 2018, 107, 559-566.	2.9	87
16	Influence of freezing and dehydration of olive leaves (var. Serrana) on extract composition and antioxidant potential. Food Research International, 2013, 50, 189-196.	2.9	86
17	Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Physics Procedia, 2010, 3, 153-159.	1.2	85
18	Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 2012, 30, 1199-1208.	1.7	85

#	Article	IF	CITATIONS
19	Modeling Ultrasonically Assisted Convective Drying of Eggplant. Drying Technology, 2011, 29, 1499-1509.	1.7	83
20	Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 2014, 138, 35-44.	2.7	82
21	Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 2014, 21, 1235-1243.	3.8	82
22	Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT - Food Science and Technology, 2008, 41, 18-25.	2.5	81
23	Kinetic improvement of olive leaves' bioactive compounds extraction by using power ultrasound in a wide temperature range. Ultrasonics Sonochemistry, 2017, 34, 466-473.	3.8	80
24	Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 2015, 8, 1503-1511.	2.6	74
25	Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 2016, 28, 100-109.	3.8	74
26	Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 2011, 91, 2511-2517.	1.7	70
27	Drying intensification combining ultrasound pre-treatment and ultrasound-assisted air drying. Journal of Food Engineering, 2017, 215, 72-77.	2.7	69
28	Enthalpy-driven optimization of intermittent drying of Mangifera indica L Chemical Engineering Research and Design, 2009, 87, 885-898.	2.7	64
29	Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science and Emerging Technologies, 2014, 23, 146-155.	2.7	62
30	From extraction of valuable compounds to health promoting benefits of olive leaves through bioaccessibility, bioavailability and impact on gut microbiota. Trends in Food Science and Technology, 2019, 83, 63-77.	7.8	62
31	Extraction kinetics modeling of antioxidants from grape stalk (Vitis vinifera var. Bobal): Influence of drying conditions. Journal of Food Engineering, 2010, 101, 49-58.	2.7	56
32	Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 2016, 34, 986-996.	1.7	54
33	Influence of Olive Leaf Processing on the Bioaccessibility of Bioactive Polyphenols. Journal of Agricultural and Food Chemistry, 2014, 62, 6190-6198.	2.4	52
34	Infusion of grape phenolics into fruits and vegetables by osmotic treatment: Phenolic stability during air drying. Journal of Food Engineering, 2010, 99, 142-150.	2.7	49
35	Optimization of the Drying Process of Carrot (<i>Daucus carota</i> V. Nantes) on the Basis of Quality Criteria. Drying Technology, 2013, 31, 951-962.	1.7	49
36	Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chemistry, 2014, 161, 40-46.	4.2	49

#	Article	IF	Citations
37	Effect of Blanching and Air Flow Rate on Turmeric Drying. Food Science and Technology International, 2006, 12, 315-323.	1.1	45
38	Model-based investigation into atmospheric freeze drying assisted by power ultrasound. Journal of Food Engineering, 2015, 151, 7-15.	2.7	44
39	Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 2016, 168, 251-258.	2.7	44
40	Effects of Ultrasound-Assisted Extraction and Solvent on the Phenolic Profile, Bacterial Growth, and Anti-Inflammatory/Antioxidant Activities of Mediterranean Olive and Fig Leaves Extracts. Molecules, 2020, 25, 1718.	1.7	43
41	Influence of air temperature on drying kinetics and antioxidant potential of olive pomace. Journal of Food Engineering, 2013, 119, 516-524.	2.7	38
42	Rapid evaluation of frying oil degradation using ultrasonic technology. Food Research International, 2007, 40, 406-414.	2.9	36
43	Ultrasonic Intensification of Grape Stalk Convective Drying: Kinetic and Energy Efficiency. Drying Technology, 2013, 31, 942-950.	1.7	36
44	Drying and storage of olive leaf extracts. Influence on polyphenols stability. Industrial Crops and Products, 2016, 79, 232-239.	2.5	33
45	Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 2016, 100, 282-291.	1.8	32
46	Ultrasonically assisted antioxidant extraction from grape stalks and olive leaves. Physics Procedia, 2010, 3, 147-152.	1.2	31
47	Non-destructive determination of fat content in green hams using ultrasound and X-rays. Meat Science, 2015, 104, 37-43.	2.7	30
48	Advances in the ultrasound characterization of dry-cured meat products. Journal of Food Engineering, 2013, 119, 464-470.	2.7	29
49	Influence of pre-treatment and storage temperature on the evolution of the colour of dried persimmon. LWT - Food Science and Technology, 2010, 43, 1191-1196.	2.5	27
50	Ultrasonic monitoring of lard crystallization during storage. Food Research International, 2011, 44, 146-155.	2.9	27
51	Ultrasonically enhanced desalting of cod (Gadus morhua). Mass transport kinetics and structural changes. LWT - Food Science and Technology, 2014, 59, 130-137.	2.5	25
52	Effect of ultrasound technology combined with binary mixtures of ethanol and water on antibacterial and antiviral activities of Erodium glaucophyllum extracts. Innovative Food Science and Emerging Technologies, 2019, 52, 189-196.	2.7	25
53	Ultrasonically assisted atmospheric freeze-drying of button mushroom. Drying kinetics and product quality. Drying Technology, 2018, 36, 1814-1823.	1.7	24
54	Effect of ultrasound transducer design on the acoustically-assisted supercritical fluid extraction of antioxidants from oregano. Ultrasonics Sonochemistry, 2018, 47, 47-56.	3.8	24

#	Article	IF	CITATIONS
55	Use of ultrasonics for the composition assessment of olive mill wastewater (alpechin). Food Research International, 2004, 37, 595-601.	2.9	22
56	Effect of high pressure processing temperature on dry-cured hams with different textural characteristics. Meat Science, 2019, 152, 127-133.	2.7	21
57	Assessing the textural defect of pastiness in dry-cured pork ham using chemical, microstructural, textural and ultrasonic analyses. Journal of Food Engineering, 2020, 265, 109690.	2.7	21
58	Influence of Drying on the Retention of Olive Leaf Polyphenols Infused into Dried Apple. Food and Bioprocess Technology, 2015, 8, 120-133.	2.6	20
59	X-ray absorptiometry and ultrasound technologies for non-destructive compositional analysis of dry-cured ham. Journal of Food Engineering, 2015, 155, 62-68.	2.7	19
60	Ethnopharmacology, phytochemistry and biological activity of Erodium species: A review. Food Research International, 2019, 126, 108659.	2.9	19
61	Ultrasound Effects on the Mass Transfer Processes during Drying Kinetic of Olive Leaves (<i>Olea Europea</i> , var. Serrana). Defect and Diffusion Forum, 0, 297-301, 1083-1090.	0.4	18
62	Non-destructive salt content prediction in brined pork meat using ultrasound technology. Journal of Food Engineering, 2015, 154, 39-48.	2.7	18
63	Ultrasonically assisted low-temperature drying of desalted codfish. LWT - Food Science and Technology, 2016, 65, 444-450.	2.5	18
64	Impact of Power Ultrasound on the Quality of Fruits and Vegetables During Dehydration. Physics Procedia, 2015, 70, 828-832.	1.2	17
65	Ultrasonic characterization and online monitoring of pork meat dry salting process. Food Control, 2016, 60, 646-655.	2.8	17
66	Intensification of heat transfer during mild thermal treatment of dry-cured ham by using airborne ultrasound. Ultrasonics Sonochemistry, 2018, 41, 206-212.	3.8	15
67	Proteomic footprint of ultrasound intensification on sliced dry-cured ham subjected to mild thermal conditions. Journal of Proteomics, 2019, 193, 123-130.	1.2	15
68	Natural Convection Drying at Low Temperatures of Previously Frozen Salted Meat. Drying Technology, 2007, 25, 1885-1891.	1.7	14
69	Non-destructive analysis of Manchego cheese texture using impact force–deformation and acoustic impulse–response techniques. Journal of Food Engineering, 2007, 82, 238-245.	2.7	14
70	Influence of Ultrasound-Assisted Air-Drying and Conventional Air-Drying on the Activity of Apple Enzymes. Journal of Food Processing and Preservation, 2017, 41, e12832.	0.9	14
71	Accelerated mild heating of dry-cured ham by applying power ultrasound in a liquid medium. Innovative Food Science and Emerging Technologies, 2018, 50, 94-101.	2.7	14
72	Ultrasonic assessment of textural changes in vacuum packaged sliced Iberian ham induced by high pressure treatment or cold storage. Meat Science, 2013, 95, 389-395.	2.7	12

#	Article	IF	Citations
73	Influence of the Ultrasonic Power Applied on Freeze Drying Kinetics. Physics Procedia, 2015, 70, 850-853.	1.2	11
74	The Use of Ultrasound for Drying, Degassing and Defoaming of Foods. , 2021, , 415-438.		11
75	Use of air-coupled ultrasound for the non-invasive characterization of the textural properties of pork burger patties. Journal of Food Engineering, 2021, 297, 110481.	2.7	11
76	Simulation of grape stalk deep-bed drying. Journal of Food Engineering, 2009, 90, 308-314.	2.7	10
77	Ultrasonic Characterization of Pork Fat Crystallization during Cold Storage. Journal of Food Science, 2014, 79, E828-38.	1.5	10
78	Ultrasonic characterization of the fat source and composition of formulated dry-cured meat products. Food Science and Technology International, 2014, 20, 275-285.	1.1	10
79	Airborne power ultrasound for drying process intensification at low temperatures: Use of a stepped-grooved plate transducer. Drying Technology, 2021, 39, 245-258.	1.7	10
80	Ultrasound intensification of Ferrochelatase extraction from pork liver as a strategy to improve ZINC-protoporphyrin formation. Ultrasonics Sonochemistry, 2021, 78, 105703.	3.8	10
81	Atmospheric freeze drying assisted by power ultrasound. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012021.	0.3	9
82	Non-invasive ultrasonic technology for continuous monitoring of pork loin and ham dry salting. Meat Science, 2017, 128, 8-14.	2.7	9
83	Ultrasonic characterization of salt, moisture and texture modifications in dry-cured ham during post-salting. Meat Science, 2021, 172, 108356.	2.7	9
84	The role of drying methods on enzymatic activity and phenolics content of impregnated dried apple. Drying Technology, 2017, 35, 1204-1213.	1.7	8
85	Ultrasonically-Assisted and Conventional Extraction from Erodium Glaucophyllum Roots Using Ethanol:Water Mixtures: Phenolic Characterization, Antioxidant, and Anti-Inflammatory Activities. Molecules, 2020, 25, 1759.	1.7	7
86	Assessment of avocado textural changes during ripening by using contactless air-coupled ultrasound. Journal of Food Engineering, 2021, 289, 110266.	2.7	7
87	Influence of the Addition of Dietary Fiber on the Drying Curves and Microstructure of a Dry Fermented Sausage (<i>Sobrassada</i>). Drying Technology, 2012, 30, 146-153.	1.7	6
88	Use of Novel Drying Technologies to Improve the Retention of Infused Olive Leaf Polyphenols. Drying Technology, 2015, 33, 1051-1060.	1.7	6
89	Mechanistic modeling to address process analysis: Kibbles of carob (Ceratonia siliqua, L.) pod extraction. Journal of Food Engineering, 2016, 176, 71-76.	2.7	6
90	Thermodynamic analysis and modeling of water vapor adsorption isotherms of roasted specialty coffee (Coffee arabica L. cv. Colombia). LWT - Food Science and Technology, 2022, 160, 113335.	2.5	6

#	Article	IF	CITATIONS
91	Extraction of Antioxidant Compounds from Grape Stalk Dried at Different Conditions. Defect and Diffusion Forum, 2009, 283-286, 604-609.	0.4	5
92	Bacterial growth and biological properties of Cymbopogon schoenanthus and Ziziphus lotus are modulated by extraction conditions. Food Research International, 2020, 136, 109534.	2.9	5
93	Airborne ultrasonic application on hot air-drying of pork liver. Intensification of moisture transport and impact on protein solubility. Ultrasonics Sonochemistry, 2022, 86, 106011.	3.8	4
94	Exploring the use of Low-intensity Ultrasonics as a Tool for Assessing the Salt Content in Pork Meat Products. Physics Procedia, 2015, 70, 837-840.	1.2	3
95	Ultrasonic monitoring of Iberian fat crystallization during cold storage. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012035.	0.3	2
96	Ultrasonic characterization of pork meat salting. IOP Conference Series: Materials Science and Engineering, 2012, 42, 012043.	0.3	1
97	Influence of Brine Concentration on Moisture and NaCl Transport During Meat Salting. Food Engineering Series, 2015, , 519-525.	0.3	1
98	Grape Seeds Dehydration under Forced Convection Conditions. Defect and Diffusion Forum, 0, 283-286, 610-615.	0.4	0
99	State-of-the-art in the application of airborne power ultrasonic technologies in atmospheric freeze drying processes. Proceedings of Meetings on Acoustics, 2019, , .	0.3	0
100	Response to the Letter to the editor regarding . Journal of Food Engineering 128:132–139. Journal of Food Engineering, 2020, 268, 109752.	2.7	0