Eva M Putz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176547/publications.pdf

Version: 2024-02-01

414034 279487 41 1,878 23 32 h-index citations g-index papers 43 43 43 3580 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	CIS is a potent checkpoint in NK cell–mediated tumor immunity. Nature Immunology, 2016, 17, 816-824.	7.0	289
2	Dysregulated IL-18 Is a Key Driver of Immunosuppression and a Possible Therapeutic Target in the Multiple Myeloma Microenvironment. Cancer Cell, 2018, 33, 634-648.e5.	7.7	163
3	Aggressive B-cell lymphomas in patients with myelofibrosis receiving JAK1/2 inhibitor therapy. Blood, 2018, 132, 694-706.	0.6	132
4	STAT5 Is a Key Regulator in NK Cells and Acts as a Molecular Switch from Tumor Surveillance to Tumor Promotion. Cancer Discovery, 2016, 6, 414-429.	7.7	124
5	JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Frontiers in Immunology, 2019, 10, 2590.	2.2	110
6	CDK8-Mediated STAT1-S727 Phosphorylation Restrains NK Cell Cytotoxicity and Tumor Surveillance. Cell Reports, 2013, 4, 437-444.	2.9	104
7	Interleukin-12 from CD103+ Batf3-Dependent Dendritic Cells Required for NK-Cell Suppression of Metastasis. Cancer Immunology Research, 2017, 5, 1098-1108.	1.6	98
8	Loss of STAT3 in murine NK cells enhances NK cell–dependent tumor surveillance. Blood, 2014, 124, 2370-2379.	0.6	90
9	NK cell heparanase controls tumor invasion and immune surveillance. Journal of Clinical Investigation, 2017, 127, 2777-2788.	3.9	85
10	Bench to bedside: NK cells and control of metastasis. Clinical Immunology, 2017, 177, 50-59.	1.4	71
11	PAK-dependent STAT5 serine phosphorylation is required for BCR-ABL-induced leukemogenesis. Leukemia, 2014, 28, 629-641.	3.3	56
12	Conditional IFNAR1 ablation reveals distinct requirements of Type I IFN signaling for NK cell maturation and tumor surveillance. Oncolmmunology, 2012, 1, 1027-1037.	2.1	53
13	Targeting cytokine signaling checkpoint CIS activates NK cells to protect from tumor initiation and metastasis. Oncolmmunology, 2017, 6, e1267892.	2.1	53
14	Engineering AvidCARs for combinatorial antigen recognition and reversible control of CAR function. Nature Communications, 2020, 11, 4166.	5.8	53
15	Leukemic challenge unmasks a requirement for PI3Kδ in NK cell–mediated tumor surveillance. Blood, 2008, 112, 4655-4664.	0.6	48
16	NK Cell–Specific CDK8 Deletion Enhances Antitumor Responses. Cancer Immunology Research, 2018, 6, 458-466.	1.6	40
17	In Vivo Long-Term Kinetics of Radiolabeled N,N-Dimethyltryptamine and Tryptamine. Journal of Nuclear Medicine, 2011, 52, 970-977.	2.8	32
18	The cooperating mutation or "second hit―determines the immunologic visibility toward MYC-induced murine lymphomas. Blood, 2011, 118, 4635-4645.	0.6	30

#	Article	IF	CITATIONS
19	PI3Kδ Is Essential for Tumor Clearance Mediated by Cytotoxic T Lymphocytes. PLoS ONE, 2012, 7, e40852.	1.1	30
20	Identification of an Indispensable Role for Tyrosine Kinase 2 in CTL-Mediated Tumor Surveillance. Cancer Research, 2009, 69, 203-211.	0.4	29
21	In vivotumor surveillance by NK cells requires TYK2 but not TYK2 kinase activity. Oncolmmunology, 2015, 4, e1047579.	2.1	27
22	Targeting VEGF-A in myeloid cells enhances natural killer cell responses to chemotherapy and ameliorates cachexia. Nature Communications, 2016, 7, 12528.	5.8	25
23	CD52 is a molecular target in advanced systemic mastocytosis. FASEB Journal, 2014, 28, 3540-3551.	0.2	24
24	Myeloid <i>STAT3</i> promotes formation of colitis-associated colorectal cancer in mice. Oncolmmunology, 2015, 4, e998529.	2.1	24
25	The Tyrosine Kinase Btk Regulates the Macrophage Response to Listeria monocytogenes Infection. PLoS ONE, 2013, 8, e60476.	1.1	18
26	NK cell development in bone marrow and liver: site matters. Genes and Immunity, 2014, 15, 584-587.	2.2	15
27	Loss of STAT3 in Lymphoma Relaxes NK Cell-Mediated Tumor Surveillance. Cancers, 2014, 6, 193-210.	1.7	13
28	Novel non-canonical role of STAT1 in Natural Killer cell cytotoxicity. Oncolmmunology, 2016, 5, e1186314.	2.1	13
29	STAT1-S727 - the license to kill. Oncolmmunology, 2014, 3, e955441.	2.1	9
30	Loss of NKG2D in murine NK cells leads to increased perforin production upon longâ€ŧerm stimulation with ILâ€2. European Journal of Immunology, 2020, 50, 880-890.	1.6	9
31	Pembrolizumab plus docetaxel for the treatment of recurrent/metastatic head and neck cancer: A prospective phase I/II study. Oral Oncology, 2022, 124, 105634.	0.8	9
32	Bcl-2. Oncolmmunology, 2012, 1, 749-750.	2.1	2
33	STAT1 Ser727 – key regulator for NK cell-mediated cytotoxicity and tumor surveillance. BMC Pharmacology, 2008, 8, .	0.4	0
34	Unexpected role of STAT1 serine727 for NK cell function. BMC Pharmacology, 2009, 9, .	0.4	0
35	PS2-084 Dissection of kinase-dependent and -independent functions of Tyk2 in immunity to infection and tumor-surveillance. Cytokine, $2011, 56, 86$.	1.4	0
36	PI3K \hat{l} is indispensable for CTL-mediated cytotoxicity. BMC Pharmacology, 2011, 11, .	0.4	0

#	Article	IF	CITATIONS
37	STAT Transcription Factors: Controlling All Aspects of NK Cell Biology. , 2012, , 187-204.		0
38	Targeting PI3Kδ. Oncolmmunology, 2013, 2, e22272.	2.1	0
39	ID: 77. Cytokine, 2015, 76, 79.	1.4	O
40	CDK8-mediated STAT1-S727 phosphorylation restrains NK cell cytotoxicity and tumor surveillance. Intrinsic Activity, 2013, 1, A3.4.	0.0	0
41	Abstract IA27: Novel natural killer cell targets for cancer immunotherapy. , 2016, , .		0