Katrin M Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176526/publications.pdf

Version: 2024-02-01

304602 289141 1,697 44 22 citations h-index g-index papers

46 46 46 2713 docs citations times ranked citing authors all docs

40

#	Article	IF	CITATIONS
1	Environmental heterogeneity predicts global species richness patterns better than area. Global Ecology and Biogeography, 2021, 30, 842-851.	2.7	32
2	Scaling methods in ecological modelling. Methods in Ecology and Evolution, 2020, 11, 1368-1378.	2.2	27
3	PioLaG: a piosphere landscape generator for savanna rangeland modelling. Landscape Ecology, 2020, 35, 2061-2082.	1.9	9
4	The <scp>nlrx r</scp> package: A nextâ€generation framework for reproducible NetLogo model analyses. Methods in Ecology and Evolution, 2019, 10, 1854-1863.	2.2	36
5	EFForTS-LGraf: A landscape generator for creating smallholder-driven land-use mosaics. PLoS ONE, 2019, 14, e0222949.	1.1	3
6	Modeling Aboveground–Belowground Interactions. Ecological Studies, 2018, , 47-68.	0.4	0
7	Influence of seed size on performance of non-native annual plant species in a novel community at two planting densities. Acta Oecologica, 2018, 92, 131-137.	0.5	5
8	Land-use change in oil palm dominated tropical landscapes—An agent-based model to explore ecological and socio-economic trade-offs. PLoS ONE, 2018, 13, e0190506.	1.1	46
9	The role of biotic factors during plant establishment in novel communities assessed with an agent-based simulation model. PeerJ, 2018, 6, e5342.	0.9	7
10	A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biological Reviews, 2017, 92, 1539-1569.	4.7	222
11	How patch size and refuge availability change interaction strength and population dynamics: a combined individual- and population-based modeling experiment. PeerJ, 2017, 5, e2993.	0.9	11
12	Root-Lesion Nematodes Suppress Cabbage Aphid Population Development by Reducing Aphid Daily Reproduction. Frontiers in Plant Science, 2016, 7, 111.	1.7	12
13	Economic and ecological trade-offs of agricultural specialization at different spatial scales. Ecological Economics, 2016, 122, 111-120.	2.9	72
14	Efficiency of sample-based indices for spatial pattern recognition of wild pistachio (Pistacia atlantica) trees in semi-arid woodlands. Journal of Forestry Research, 2016, 27, 583-594.	1.7	5
15	Community dynamics under environmental change: How can next generation mechanistic models improve projections of species distributions?. Ecological Modelling, 2016, 326, 63-74.	1.2	66
16	Spatial scales of interactions among bacteria and between bacteria and the leaf surface. FEMS Microbiology Ecology, 2015, 91, .	1.3	50
17	Modeling microbial growth and dynamics. Applied Microbiology and Biotechnology, 2015, 99, 8831-8846.	1.7	50
18	Robustness and management adaptability in tropical rangelands: a viability-based assessment under the non-equilibrium paradigm. Animal, 2014, 8, 1272-1281.	1.3	19

#	Article	IF	CITATIONS
19	Adaptive and Selective Seed Abortion Reveals Complex Conditional Decision Making in Plants. American Naturalist, 2014, 183, 376-383.	1.0	30
20	Heterodera schachtii Nematodes Interfere with Aphid-Plant Relations on Brassica oleracea. Journal of Chemical Ecology, 2013, 39, 1193-1203.	0.9	24
21	Non-linear effects of pesticide application on biodiversity-driven ecosystem services and disservices in a cacao agroecosystem: A modeling study. Basic and Applied Ecology, 2013, 14, 115-125.	1.2	23
22	How can we bring together empiricists and modellers in functional biodiversity research?. Basic and Applied Ecology, 2013, 14, 93-101.	1.2	24
23	Production and Robustness of a Cacao Agroecosystem: Effects of Two Contrasting Types of Management Strategies. PLoS ONE, 2013, 8, e80352.	1.1	14
24	Testing the Paradox of Enrichment along a Land Use Gradient in a Multitrophic Aboveground and Belowground Community. PLoS ONE, 2012, 7, e49034.	1.1	14
25	perspective: Learning new tricks from old trees: revisiting the savanna question. Frontiers of Biogeography, 2012, 2, .	0.8	3
26	Microbiology of the phyllosphere: a playground for testing ecological concepts. Oecologia, 2012, 168, 621-629.	0.9	112
27	Disentangling facilitation and seed dispersal from environmental heterogeneity as mechanisms generating associations between savanna plants. Journal of Vegetation Science, 2011, 22, 1038-1048.	1.1	27
28	Idiosyncrasy in ecology – what's in a word?. Frontiers in Ecology and the Environment, 2011, 9, 431-433.	1.9	3
29	Predicting population and community dynamics: The type of aggregation matters. Basic and Applied Ecology, 2010, 11, 563-571.	1.2	8
30	Crossing scales in ecology. Basic and Applied Ecology, 2010, 11, 561-562.	1.2	3
31	Reduction of rare soil microbes modifies plant–herbivore interactions. Ecology Letters, 2010, 13, 292-301.	3.0	176
32	The power of simulating experiments. Ecological Modelling, 2009, 220, 2594-2597.	1.2	20
33	Are savannas patch-dynamic systems? A landscape model. Ecological Modelling, 2009, 220, 3576-3588.	1.2	25
34	Patch dynamics integrate mechanisms for savanna tree–grass coexistence. Basic and Applied Ecology, 2009, 10, 491-499.	1.2	27
35	Empirical and theoretical challenges in aboveground–belowground ecology. Oecologia, 2009, 161, 1-14.	0.9	223
36	Quantifying the impact of above―and belowground higher trophic levels on plant and herbivore performance by modeling ¹ . Oikos, 2009, 118, 981-990.	1.2	13

#	Article	IF	CITATIONS
37	Determining patch size. African Journal of Ecology, 2008, 46, 440-442.	0.4	2
38	Spacing patterns of an Acacia tree in the Kalahari over a 61-year period: How clumped becomes regular and vice versa. Acta Oecologica, 2008, 33, 355-364.	0.5	35
39	Multi-proxy evidence for competition between savanna woody species. Perspectives in Plant Ecology, Evolution and Systematics, 2008, 10, 63-72.	1.1	46
40	The rhythm of savanna patch dynamics. Journal of Ecology, 2007, 95, 1306-1315.	1.9	54
41	SATCHMO: A spatial simulation model of growth, competition, and mortality in cycling savanna patches. Ecological Modelling, 2007, 209, 377-391.	1.2	31
42	Longâ€term mortality patterns of the deepâ€rooted Acacia erioloba : The middle class shall die!. Journal of Vegetation Science, 2006, 17, 473-480.	1.1	24
43	Long-term mortality patterns of the deep-rooted Acacia erioloba: The middle class shall die!. Journal of Vegetation Science, 2006, 17, 473.	1.1	21
44	Big is not better: small Acacia mellifera shrubs are more vital after fire. African Journal of Ecology, 2005, 43, 131-136.	0.4	38