
Benjamin Schusser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176427/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20170-20175.	3.3	128
2	HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon. Gastroenterology, 2018, 154, 1791-1804.e22.	0.6	128
3	Systematic substrate identification indicates a central role for the metalloprotease ADAM10 in axon targeting and synapse function. ELife, 2016, 5, .	2.8	124
4	Characterization of Chicken Tumor Necrosis Factor-α, a Long Missed Cytokine in Birds. Frontiers in Immunology, 2018, 9, 605.	2.2	66
5	Antiviral Activity of Lambda Interferon in Chickens. Journal of Virology, 2014, 88, 2835-2843.	1.5	61
6	Highly Pathogenic Avian Influenza Viruses Do Not Inhibit Interferon Synthesis in Infected Chickens but Can Override the Interferon-Induced Antiviral State. Journal of Virology, 2011, 85, 7730-7741.	1.5	52
7	Mx Is Dispensable for Interferon-Mediated Resistance of Chicken Cells against Influenza A Virus. Journal of Virology, 2011, 85, 8307-8315.	1.5	49
8	Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Frontiers in Genetics, 2018, 9, 456.	1.1	44
9	Harnessing Gene Conversion in Chicken B Cells to Create a Human Antibody Sequence Repertoire. PLoS ONE, 2013, 8, e80108.	1.1	36
10	Unraveling the role of B cells in the pathogenesis of an oncogenic avian herpesvirus. Proceedings of the United States of America, 2018, 115, 11603-11607.	3.3	32
11	Expression of heavy chainâ€only antibodies can support B ell development in light chain knockout chickens. European Journal of Immunology, 2016, 46, 2137-2148.	1.6	31
12	The Long Pentraxin PTX3 Is of Major Importance Among Acute Phase Proteins in Chickens. Frontiers in Immunology, 2019, 10, 124.	2.2	26
13	A Diverse Repertoire of Human Immunoglobulin Variable Genes in a Chicken B Cell Line is Generated by Both Gene Conversion and Somatic Hypermutation. Frontiers in Immunology, 2015, 6, 126.	2.2	25
14	Male fertility restored by transplanting primordial germ cells into testes: a new way towards efficient transgenesis in chicken. Scientific Reports, 2017, 7, 14246.	1.6	25
15	Cas9-expressing chickens and pigs as resources for genome editing in livestock. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	22
16	Blocking of the CXCR4-CXCL12 Interaction Inhibits the Migration of Chicken B Cells Into the Bursa of Fabricius. Frontiers in Immunology, 2019, 10, 3057.	2.2	22
17	Acquiring Resistance Against a Retroviral Infection via CRISPR/Cas9 Targeted Genome Editing in a Commercial Chicken Line. Frontiers in Genome Editing, 2020, 2, 3.	2.7	19
18	Abrogation of Marek's disease virus replication using CRISPR/Cas9. Scientific Reports, 2020, 10, 10919.	1.6	15

#	Article	IF	CITATIONS
19	The Discovery of Chicken Foxp3 Demands Redefinition of Avian Regulatory T Cells. Journal of Immunology, 2022, 208, 1128-1138.	0.4	12
20	A Genetically Engineered Commercial Chicken Line Is Resistant to Highly Pathogenic Avian Leukosis Virus Subgroup J. Microorganisms, 2021, 9, 1066.	1.6	10
21	AP-2δExpression Kinetics in Multimodal Networks in the Developing Chicken Midbrain. Frontiers in Neural Circuits, 2021, 15, 756184.	1.4	1
22	Advances in genetic engineering of the avian genome. , 2022, , 559-572.		1