Todd B Marder

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176335/publications.pdf

Version: 2024-02-01

406 papers 32,985 citations

97 h-index 163 g-index

442 all docs

442 docs citations

442 times ranked 14314 citing authors

#	Article	IF	CITATIONS
1	Câ^'H Activation for the Construction of Câ^'B Bonds. Chemical Reviews, 2010, 110, 890-931.	23.0	2,397
2	Diboron(4) Compounds: From Structural Curiosity to Synthetic Workhorse. Chemical Reviews, 2016, 116, 9091-9161.	23.0	835
3	Applications of Three-Coordinate Organoboron Compounds and Polymers in Optoelectronics. Chemistry of Materials, 2004, 16, 4574-4585.	3.2	719
4	Boron Chemistry Lights the Way: Optical Properties of Molecular and Polymeric Systems C.D.E. thanks EPSRC for a postgraduate studentship and Syngenta for a postgraduate scholarship, and T.B.M. thanks the University of Durham for support and Prof. Dr. K. Tamao for a preprint of ref. 32 Angewandte Chemie - International Edition, 2002, 41, 2927.	7.2	703
5	Will We Soon Be Fueling our Automobiles with Ammonia–Borane?. Angewandte Chemie - International Edition, 2007, 46, 8116-8118.	7.2	613
6	Transition Metalâ^Boryl Compounds:Â Synthesis, Reactivity, and Structure. Chemical Reviews, 1998, 98, 2685-2722.	23.0	562
7	Recent developments in and perspectives on three-coordinate boron materials: a bright future. Chemical Science, 2017, 8, 846-863.	3.7	555
8	Manipulating Chargeâ€Transfer Character with Electronâ€Withdrawing Mainâ€Group Moieties for the Color Tuning of Iridium Electrophosphors. Advanced Functional Materials, 2008, 18, 499-511.	7.8	487
9	BN versus CC: How Similar Are They?. Angewandte Chemie - International Edition, 2008, 47, 242-244.	7.2	438
10	A Facile Route to Aryl Boronates: Roomâ€Temperature, Copperâ€Catalyzed Borylation of Aryl Halides with Alkoxy Diboron Reagents. Angewandte Chemie - International Edition, 2009, 48, 5350-5354.	7.2	390
11	Formation of Aryl- and Benzylboronate Esters by Rhodium-Catalyzed Câ^'H Bond Functionalization with Pinacolborane. Angewandte Chemie - International Edition, 2001, 40, 2168-2171.	7.2	365
12	Alkylboronic Esters from Copperâ€Catalyzed Borylation of Primary and Secondary Alkyl Halides and Pseudohalides. Angewandte Chemie - International Edition, 2012, 51, 528-532.	7.2	360
13	Transition metal catalysed diboration. Topics in Catalysis, 1998, 5, 63-73.	1.3	357
14	Reactions of catecholborane with Wilkinson's catalyst: implications for transition metal-catalyzed hydroborations of alkenes. Journal of the American Chemical Society, 1992, 114, 9350-9359.	6.6	334
15	Boryl ligands and their roles in metal-catalysed borylation reactions. Chemical Communications, 2009, , 3987.	2.2	328
16	Experimental and Theoretical Studies of the Photophysical Properties of 2- and 2,7-Functionalized Pyrene Derivatives. Journal of the American Chemical Society, 2011, 133, 13349-13362.	6.6	284
17	Die Borchemie leuchtet: optische Eigenschaften von Molek $\tilde{A}f\hat{A}^{1}/4$ len und Polymeren C.D.E. dankt EPSRC und Syngenta f $\tilde{A}f\hat{A}^{1}/4$ r Postgraduiertenstipendien und T.B.M. der University of Durham f $\tilde{A}f\hat{A}^{1}/4$ r Unterst $\tilde{A}f\hat{A}^{1}/4$ tzung sowie Prof. Dr. K. Tamao f $\tilde{A}f\hat{A}^{1}/4$ r einen Vorabdruck von Lit. 32 Angewandte Chemie, 2002. 114. 3051.	1.6	277
18	Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorganic Chemistry, 2005, 44, 9384-9390.	1.9	272

#	Article	IF	Citations
19	Selective Ir-catalysed borylation of polycyclic aromatic hydrocarbons: structures of naphthalene-2,6-bis(boronate), pyrene-2,7-bis(boronate) and perylene-2,5,8,11-tetra(boronate) esters. Chemical Communications, 2005, 2172, 217	2.2	254
20	Alkynes and Diynes:Â Molecular Structures ofcis-[(PPh3)2Pt(Bcat)2],cis-[(dppe)Pt(Bcat)2],cis-[(dppb)Pt(Bcat)2], (E)-(4-MeOC6H4)C(Bcat)C(Bcat), (Z)-(C6H5)C(Bcat)C(C6H5)(Bcat), and (Z,Z)-(4-MeOC6H4)C(Bcat)C(Bcat)C(Bcat)C(Bcat)C(4-MeOC6H4)(Bcat), (z)-(4-MeOC6H4)C(Bcat)C(1.1 Overlock	251 10 Tf 50 682
21	Transition Metal Catalyzed Diboration of Vinylarenes. Angewandte Chemie International Edition in English, 1995, 34, 1336-1338.	4.4	248
22	sp ² â€"sp ³ diboranes: astounding structural variability and mild sources of nucleophilic boron for organic synthesis. Chemical Communications, 2015, 51, 9594-9607.	2.2	222
23	Synthesis, Crystal Structures, Linear and Nonlinear Optical Properties, and Theoretical Studies of (p-R-Phenyl)-, (p-R-Phenylethynyl)-, and (E)-[2-(p-R-Phenyl)ethenyl]dimesitylboranes and Related Compounds. Chemistry - A European Journal, 2006, 12, 2758-2771.	1.7	218
24	DFT Studies on the Borylation of $\hat{l}\pm,\hat{l}^2$ -Unsaturated Carbonyl Compounds Catalyzed by Phosphine Copper(I) Boryl Complexes and Observations on the Interconversions between O- and C-Bound Enolates of Cu, B, and Si. Organometallics, 2008, 27, 4443-4454.	1.1	210
25	DFT Studies of Alkene Insertions into Cuâ^B Bonds in Copper(I) Boryl Complexes. Organometallics, 2007, 26, 2824-2832.	1.1	209
26	Ir-Catalyzed Borylation of CH Bonds in N-Containing Heterocycles: Regioselectivity in the Synthesis of Heteroaryl Boronate Esters. Angewandte Chemie - International Edition, 2006, 45, 489-491.	7.2	206
27	Zincâ€Catalyzed Borylation of Primary, Secondary and Tertiary Alkyl Halides with Alkoxy Diboron Reagents at Room Temperature. Angewandte Chemie - International Edition, 2014, 53, 1799-1803.	7.2	204
28	Density Functional Theory Studies on the Mechanism of the Reduction of CO2to CO Catalyzed by Copper(I) Boryl Complexes. Journal of the American Chemical Society, 2006, 128, 15637-15643.	6.6	203
29	The Synthesis and One―and Twoâ€Photon Optical Properties of Dipolar, Quadrupolar and Octupolar Donor–Acceptor Molecules Containing Dimesitylboryl Groups. Chemistry - A European Journal, 2009, 15, 198-208.	1.7	196
30	Linear and Nonlinear Optical Properties of Three-Coordinate Organoboron Compounds. Journal of Solid State Chemistry, 2000, 154, 5-12.	1.4	194
31	DFT Studies on the Mechanism of the Diboration of Aldehydes Catalyzed by Copper(I) Boryl Complexes. Journal of the American Chemical Society, 2008, 130, 5586-5594.	6.6	193
32	Photoinduced Borylation for the Synthesis of Organoboron Compounds. Chemical Reviews, 2021, 121, 3561-3597.	23.0	188
33	Flexible coordination of indenyl ligands in sandwich complexes of transition metals. Molecular structures of $[(i-C9R7)2M]$ (M = Fe, R = H, Me; M = Co, Ni, R = H): Direct measurement of the degree of slip-fold distortion as a function of d-electron count. Journal of Organometallic Chemistry, 1990, 394. 777-794.	0.8	186
34	Synthesis of 2―and 2,7â€Functionalized Pyrene Derivatives: An Application of Selective CH Borylation. Chemistry - A European Journal, 2012, 18, 5022-5035.	1.7	185
35	Three coordinate phosphorus and boron as π-donor and π-acceptor moieties respectively, in conjugated organic molecules for nonlinear optics: crystal and molecular structures of E-Ph–CHCH–B(mes)2, E-4-MeO–C6H4–CHCH-8(mes)2, and E-Ph2P–CHCH–B(mes)2[mes = lournal of the Chemical Society Chemical Communications, 1990, , 1489-1492.	: 2,4,6-Ме	23 c 832].
36	New homogeneous rhodium catalysts for the regioselective hydroboration of alkenes. Journal of the American Chemical Society, 1992, 114, 8863-8869.	6.6	182

3

#	Article	IF	CITATIONS
37	Arene–perfluoroarene interactions in crystal engineering 8: structures of 1â^¶1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons. New Journal of Chemistry, 2002, 26, 1740-1746.	1.4	181
38	Requirement for an Oxidant in Pd/Cu Co-Catalyzed Terminal Alkyne Homocoupling To Give Symmetrical 1,4-Disubstituted 1,3-Diynes. Journal of Organic Chemistry, 2005, 70, 703-706.	1.7	181
39	New Bifunctional Perfluoroaryl Boranes. Synthesis and Reactivity of theortho-Phenylene-Bridged Diboranes 1,2-[B(C6F5)2]2C6X4(X = H, F)â€~. Journal of the American Chemical Society, 1999, 121, 3244-3245.	6.6	179
40	Synthesis and second-order nonlinear optical properties of three coordinate organoboranes with diphenylphosphino and ferrocenyl groups as electron donors: crystal and molecular structures of		

#	Article	IF	Citations
55	Copper-Mediated Reduction of CO ₂ with pinB-SiMe ₂ Ph via CO ₂ Insertion into a Copper–Silicon Bond. Journal of the American Chemical Society, 2011, 133, 19060-19063.	6.6	147
56	Copper-Catalyzed/Promoted Cross-coupling of <i>gem</i> -Diborylalkanes with Nonactivated Primary Alkyl Halides: An Alternative Route to Alkylboronic Esters. Organic Letters, 2014, 16, 6342-6345.	2.4	147
57	DFT Studies on the Effect of the Nature of the Aryl Halide Yâ^'C6H4â^'X on the Mechanism of Its Oxidative Addition to PdOL versus PdOL2. Organometallics, 2007, 26, 758-760.	1.1	146
58	Platinum catalysed 1,4-diboration of \hat{l}_{\pm},\hat{l}^2 -unsaturated ketones. Chemical Communications, 1997, , 2051-2052.	2.2	144
59	25 years of N-heterocyclic carbenes: activation of both main-group element–element bonds and NHCs themselves. Dalton Transactions, 2016, 45, 5880-5895.	1.6	138
60	Lewis Acidic Borane Adducts of Pyridines and Stilbazoles for Nonlinear Optics. Chemistry of Materials, 1998, 10, 1355-1365.	3.2	134
61	Electron Delocalization in Reduced Forms of 2-(BMes ₂)pyrene and 2,7-Bis(BMes ₂)pyrene. Journal of the American Chemical Society, 2015, 137, 6750-6753.	6.6	134
62	Synthesis and characterization of ferrocenyl and bis(ferrocenyl) alkynes and polyynes: crystal structure of 1,4-bis(ferrocenyl)butadiyne and third order nonlinear optical properties of 1,8-bis(ferrocenyl)octatetrayne. Journal of Organometallic Chemistry, 1993, 452, 115-120.	0.8	131
63	Investigation of two-photon absorption behavior in symmetrical acceptor–̀–acceptor derivatives with dimesitylboryl end-groups. Evidence of new engineering routes for TPA/transparency trade-off optimization. Physical Chemistry Chemical Physics, 2005, 7, 600-606.	1.3	131
64	Switching on and off Interlayer Correlations and Porosity in 2D Covalent Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 12570-12581.	6.6	130
65	Optical and electronic properties of air-stable organoboron compounds with strongly electron-accepting bis(fluoromesityl)boryl groups. Chemical Science, 2015, 6, 308-321.	3.7	128
66	Selective Photocatalytic C–F Borylation of Polyfluoroarenes by Rh/Ni Dual Catalysis Providing Valuable Fluorinated Arylboronate Esters. Journal of the American Chemical Society, 2018, 140, 17612-17623.	6.6	128
67	Highly Electronâ€Deficient and Airâ€Stable Conjugated Thienylboranes. Angewandte Chemie - International Edition, 2014, 53, 9761-9765.	7.2	127
68	Transition metal-catalyzed addition of catecholborane to .alphasubstituted vinylarenes: hydroboration vs dehydrogenative borylation. Organometallics, 1993, 12, 975-979.	1.1	125
69	Structure and Phase Behavior of a 2:1 Complex between Arene- and Fluoroarene-Based Conjugated Rigid Rods. Angewandte Chemie - International Edition, 2004, 43, 3061-3063.	7.2	125
70	D–΀–A Triarylboron Compounds with Tunable Push–Pull Character Achieved by Modification of Both the Donor and Acceptor Moieties. Chemistry - A European Journal, 2015, 21, 177-190.	1.7	125
71	Insertion of alkenes into rhodium-boron bonds. Journal of the American Chemical Society, 1993, 115, 4367-4368.	6.6	123
72	Zincâ€Catalyzed Dual C–X and C–H Borylation of Aryl Halides. Angewandte Chemie - International Edition, 2015, 54, 11843-11847.	7.2	123

#	Article	IF	Citations
73	Structure and Reactivity of a Preactivated sp ² â \in "sp ³ Diboron Reagent: Catalytic Regioselective Boration of Î \pm ,Î 2 -Unsaturated Conjugated Compounds. Journal of Organic Chemistry, 2011, 76, 3997-4007.	1.7	122
74	Spectroscopic and Structural Characterization of the CyNHC Adduct of B ₂ pin ₂ in Solution and in the Solid State. Journal of Organic Chemistry, 2012, 77, 785-789.	1.7	121
75	Metallacarboranes in catalysis. 3. Synthesis and reactivity of exo-nido-phosphinerhodacarboranes. Journal of the American Chemical Society, 1984, 106, 2979-2989.	6.6	120
76	Synthesis of symmetric and unsymmetric 1,4-bis(p-R-phenylethynyl)benzenes via palladium/copper catalyzed cross-coupling and comments on the coupling of aryl halides with terminal alkynes. Inorganica Chimica Acta, 1994, 220, 289-296.	1.2	120
77	Oxidative addition of B-B bonds by rhodium(I) phosphine complexes: molecular structures of B2cat2 (cat = 1,2-O2C6H4) and its 4-But and 3,5-But2 analogs. Inorganic Chemistry, 1994, 33, 4623-4624.	1.9	119
78	Highly Efficient Synthesis of Alkylboronate Esters via Cu(II)-Catalyzed Borylation of Unactivated Alkyl Bromides and Chlorides in Air. ACS Catalysis, 2016, 6, 8332-8335.	5.5	118
79	Metal-promoted insertion of an activated alkene into a boron-hydrogen bond of an exopolyhedral nido-rhodacarborane: rhodium-catalyzed hydroboration. Journal of the American Chemical Society, 1984, 106, 5757-5759.	6.6	117
80	Platinum catalysed 3,4- and 1,4-diboration of $\hat{l}\pm,\hat{l}^2$ -unsaturated carbonyl compounds using bis-pinacolatodiboron. Chemical Communications, 2004, , 1854-1855.	2.2	116
81	DFT Studies on the Carboxylation of Arylboronate Esters with CO ₂ Catalyzed by Copper(I) Complexes. Organometallics, 2010, 29, 917-927.	1.1	116
82	Novel Trityl Activators with New Weakly Coordinating Anions Derived from C6F4-1,2-[B(C6F5)2]2:  Synthesis, Structures, and Olefin Polymerization Behavior. Organometallics, 2000, 19, 1619-1621.	1.1	113
83	Highly efficient monophosphine platinum catalysts for alkyne diboration. Dalton Transactions RSC, 2001, , 1650-1656.	2.3	112
84	Recent advances in asymmetric borylation by transition metal catalysis. Chemical Society Reviews, 2021, 50, 13129-13188.	18.7	112
85	Microwave-Accelerated Iridium-Catalyzed Borylation of Aromatic Câ^'H Bonds. Organic Letters, 2009, 11, 3586-3589.	2.4	111
86	Dibenzometallacyclopentadienes, boroles and selected transition metal and main group heterocyclopentadienes: Synthesis, catalytic and optical properties. Coordination Chemistry Reviews, 2010, 254, 1950-1976.	9.5	111
87	Synthesis and optical spectroscopy of linear long-chain di-terminal alkynes and their Pt–σ-acetylide polymeric complexes. Journal of Materials Chemistry, 1994, 4, 1227-1232.	6.7	110
88	Second-Order Nonlinear Optical Properties of Pushâ^'Pull Bis(phenylethynyl)benzenes and Unsymmetric Platinum Bis(phenylacetylide) Complexes. Chemistry of Materials, 1997, 9, 406-408.	3.2	110
89	Rhodium catalysed dehydrogenative borylation of alkenes: Vinylboronates via C–H activation. Dalton Transactions, 2008, , 1055-1064.	1.6	109
90	Rhodium catalysed diboration of unstrained internal alkenes and a new and general route to zwitterionic [L2Rh(η6-catBcat)] (cat = 1,2-O2C6H4) complexesâ€. Chemical Communications, 1998, , 1983-1984.	2.2	108

#	Article	IF	CITATIONS
91	Understanding the Higher Reactivity of B ₂ cat ₂ versus B ₂ pin ₂ in Copper(I)-Catalyzed Alkene Diboration Reactions. Organometallics, 2008, 27, 1178-1186.	1.1	108
92	Theoretical study of reaction pathways for the rhodium phosphine-catalysed borylation of C–H bonds with pinacolborane. Dalton Transactions, 2004, , 1556-1562.	1.6	107
93	Synthesis of mononuclear, dinuctear and oligomeric rigid-rod acetylide complexes of rhodium, and the molecular structure of [Rh(PMe3)4(CC–p-C6H4–CC)Rh(PMe3)4]. Journal of the Chemical Society Chemical Communications, 1991, , 188-190.	2.0	102
94	Accurate Molecular Structures of 16-Electron Rhodium Hydrido Boryl Complexes:Â Low-Temperature Single-Crystal X-ray and Neutron Diffraction and Computational Studies of [(PR3)2RhHCl(Boryl)] (Boryl = Bpin, Bcat). Organometallics, 2003, 22, 4557-4568.	1.1	102
95	Iridiumâ€Catalyzed CH Activation versus Directed <i>ortho</i> Metalation: Complementary Borylation of Aromatics and Heteroaromatics. Chemistry - A European Journal, 2010, 16, 8155-8161.	1.7	102
96	Efficient Synthesis of Aryl Boronates via Zinc-Catalyzed Cross-Coupling of Alkoxy Diboron Reagents with Aryl Halides at Room Temperature. Organic Letters, 2014, 16, 4562-4565.	2.4	102
97	Rhodium(I) catalysed diboration of (E)-styrylboronate esters: molecular structures of (E)-p-MeO–C6H4–CHî…CH–B(1,2-O2C6H4) and p-MeO–C6H4–CH2C{B(1,2-O2C6H4)}3. Journal of Organometallic Chemistry, 2002, 652, 77-85.	0.8	101
98	Arene-perfluoroarene interactions in crystal engineering: structural preferences in polyfluorinated tolans. Journal of Materials Chemistry, 2004, 14, 413-420.	6.7	101
99	Siteâ€Selective CH Borylation of Quinolines at the C8 Position Catalyzed by a Silicaâ€Supported Phosphane–Iridium System. Chemistry - an Asian Journal, 2014, 9, 434-438.	1.7	97
100	Oxidative addition of boron–boron, boron–chlorine and boron–bromine bonds to platinum(0)1Dedicated to Professor Ken Wade on the occasion of his 65th birthday and in recognition of his outstanding contributions to the understanding of the chemistry of boron.1. Journal of Organometallic Chemistry, 1998, 550, 183-192.	0.8	95
101	Methodology and applications of the hexadehydro-Diels–Alder (HDDA) reaction. Organic Chemistry Frontiers, 2017, 4, 891-910.	2.3	95
102	Activation of [Cp2ZrMe2] with New Perfluoroaryl Diboranes: Solution Chemistry and Ethylene Polymerization Behavior in the Presence of MeAl(BHT)2. Angewandte Chemie - International Edition, 1999, 38, 3695-3698.	7.2	94
103	Sequential C–F activation and borylation of fluoropyridines via intermediate Rh(i) fluoropyridyl complexes: a multinuclear NMR investigation. Chemical Communications, 2007, , 3664.	2.2	93
104	Reactions of catecholatoborane with phosphinorhodium complexes: molecular structures of [RhHCl(Bcat)(PPri3)2] and [{(Pri2PCH2)2}Rh{(\hat{l} -6-cat)Bcat}](cat = 1,2-O2C6H4). Journal of the Chemical Society Chemical Communications, 1991, , 304-305.	2.0	92
105	Synthesis of icosahedral carboranes for second-harmonic generation. Part 2. Journal of Materials Chemistry, 1993, 3, 139.	6.7	92
106	Borylene-Based Direct Functionalization of Organic Substrates: Synthesis, Characterization, and Photophysical Properties of Novel π-Conjugated Borirenes. Journal of the American Chemical Society, 2009, 131, 8989-8999.	6.6	90
107	Pyrene Molecular Orbital Shuffleâ€"Controlling Excited State and Redox Properties by Changing the Nature of the Frontier Orbitals. Chemistry - A European Journal, 2017, 23, 13164-13180.	1.7	90
108	CHEMISTRY: Boron Goes On the Attack. Science, 2006, 314, 69-70.	6.0	88

#	Article	IF	CITATIONS
109	Lewis Base Adducts of Diboron Compounds: Molecular Structures of [B2(cat)2(4-picoline)] and [B2(cat)2(4-picoline)2] (cat = 1,2-O2C6H4). Inorganic Chemistry, 1995, 34, 4290-4291.	1.9	87
110	Taming the beast: fluoromesityl groups induce a dramatic stability enhancement in boroles. Chemical Science, 2015, 6, 5922-5927.	3.7	86
111	Experimental and Theoretical Studies of Quadrupolar Oligothiopheneâ€Cored Chromophores Containing Dimesitylboryl Moieties as Ï€â€Accepting Endâ€Groups: Syntheses, Structures, Fluorescence, and One―and Twoâ€Photon Absorption. Chemistry - A European Journal, 2014, 20, 13618-13635.	1.7	84
112	Platinum Catalysed Diboration of Terminal Alkenes with Chiral Diborane(4) Compounds. Tetrahedron Letters, 1998, 39, 155-158.	0.7	83
113	Reactions of hydroborating reagents with phosphinorhodium hydride complexes: molecular structures of a Rh2B3 metallaborane cluster, an L2Rh(η2-H2BR2) complex and a mixed valence Rh dimer containing a semi-bridging Bcat (cat=1,2-O2C6H4) group. Polyhedron, 2004, 23, 2665-2677.	1.0	83
114	Tuning the π-bridge of quadrupolar triarylborane chromophores for one- and two-photon excited fluorescence imaging of lysosomes in live cells. Chemical Science, 2019, 10, 5405-5422.	3.7	83
115	Structural Studies of Bis-Catecholate, Bis-Dithiocatecholate, and Tetraalkoxy Diborane(4) Compounds. Inorganic Chemistry, 1998, 37, 5289-5293.	1.9	82
116	Bifunctional Lewis Acids. Synthesis and Olefin Polymerization Chemistry of the $1,1$ -Di[bis(perfluorophenyl)boryl]alkenes RCHC[B(C6F5)2]2 (R = t-Bu, C6H5, C6F5). Organometallics, 1998, 17, 3557-3566.	1.1	82
117	Iridium-catalyzed C–H borylation of pyridines. Organic and Biomolecular Chemistry, 2014, 12, 7318.	1.5	82
118	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie - International Edition, 2020, 59, 17137-17144.	7.2	82
119	The slip-fold distortion of .pibound indenyl ligands. Dynamic NMR and x-ray crystallographic studies of (.etaindenyl)RhL2 complexes. Organometallics, 1987, 6, 2012-2014.	1.1	81
120	Organometallic Complexes for Nonlinear Optics. 45. Dispersion of the Thirdâ€Order Nonlinear Optical Properties of Triphenylamineâ€Cored Alkynylruthenium Dendrimers. Advanced Materials, 2009, 21, 2318-2322.	11.1	81
121	Syntheses, structures, two-photon absorption cross-sections and computed second hyperpolarisabilities of quadrupolar A–΀–A systems containing E-dimesitylborylethenyl acceptors. Journal of Materials Chemistry, 2009, 19, 7532.	6.7	81
122	NHC Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions of Aryl Boronate Esters with Perfluorobenzenes. Journal of Organic Chemistry, 2016, 81, 5789-5794.	1.7	81
123	Persistent Roomâ€Temperature Phosphorescence from Purely Organic Molecules and Multiâ€Component Systems. Advanced Optical Materials, 2021, 9, 2100411.	3.6	81
124	Reactions of Organoruthenium Phosphine Complexes with Hydroborating Reagents. Journal of the American Chemical Society, 1995, 117, 8777-8784.	6.6	80
125	Experimental and Theoretical Studies on Organic Dâ€ï€â€A Systems Containing Threeâ€Coordinate Boron Moieties as both Ï€â€Donor and Ï€â€Acceptor. Chemistry - A European Journal, 2012, 18, 1369-1382.	1.7	80
126	Room Temperature Ring Expansion of Nâ€Heterocyclic Carbenes and BB Bond Cleavage of Diboron(4) Compounds. Chemistry - A European Journal, 2015, 21, 9018-9021.	1.7	80

#	Article	IF	CITATIONS
127	Synthesis and Characterization of Rhodium(I) Boryl and Rhodium(III) Tris(Boryl) Compounds:Â Molecular Structures of [(PMe3)4Rh(B(cat))] andfac-[(PMe3)3Rh(B(cat))3] (cat = 1,2-O2C6H4). Inorganic Chemistry, 1997, 36, 272-273.	1.9	79
128	Synthesis and characterisation of some new boron compounds containing the 2,4,6-(CF3)3C6H2(fluoromes = Ar), 2,6-(CF3)2C6H3(fluoroxyl = Arâ \in 2), or 2,4-(CF3)2C6H3(Arâ \in 3) ligands. Dalton Transactions, 2003, , 4395-4405.	1.6	79
129	Synthetic, structural, photophysical and computational studies of π-conjugated bis- and tris-1,3,2-benzodiazaboroles and related bis(boryl) dithiophenes. Dalton Transactions, 2009, , 1339.	1.6	79
130	Lewis-base adducts of the diborane(4) compounds B2(1,2-E2C6H4)2 (Eâ€=â€O or S). Journal of the Chemical Society Dalton Transactions, 1997, , 839-846.	1.1	78
131	Synthesis and electronic structure of permethylindenyl complexes of iron and cobalt. Organometallics, 1992, 11, 48-55.	1.1	77
132	Reactions of catecholborane with iridium complexes: molecular structure of trans-IrHCl(CO)(Bcat)(PPh3)2. Canadian Journal of Chemistry, 1993, 71, 930-936.	0.6	77
133	Revelation of the Difference between Arylzinc Reagents Prepared from Aryl Grignard and Aryllithium Reagents Respectively: Kinetic and Structural Features. Journal of the American Chemical Society, 2009, 131, 16656-16657.	6.6	77
134	Adduct Formation, Bâ^'H Activation and Ring Expansion at Room Temperature from Reactions of HBcat with NHCs. Chemistry - A European Journal, 2016, 22, 13032-13036.	1.7	77
135	The Series of Rare Earth Complexes [Ln 2 Cl 6 (μâ€4,4′â€bipy)(py) 6], Ln=Y, Pr, Nd, Sm‥b: A Molecular Mod System for Luminescence Properties in MOFs Based on LnCl 3 and 4,4′â€Bipyridine. Chemistry - A European Journal, 2013, 19, 17369-17378.	del 1.7	76
136	Synthesis and molecular structure of the paramagnetic Co(II) bis(boryl) complex $[Co(PMe3)3(Bcat)2(cat = 1,2,-O2C6H4)]$. Journal of Organometallic Chemistry, 1996, 513, 273-275.	0.8	75
137	Waterâ€Soluble Triarylborane Chromophores for One―and Twoâ€Photon Excited Fluorescence Imaging of Mitochondria in Cells. Chemistry - A European Journal, 2016, 22, 14701-14706.	1.7	75
138	Die $\tilde{A}\frac{1}{4}$ bergangsmetallkatalysierte Diborierung von Vinylarenen. Angewandte Chemie, 1995, 107, 1451-1452.	1.6	72
139	Bis-Catecholate, Bis-Dithiocatecholate, and Tetraalkoxy Diborane(4) Compounds:Â Aspects of Synthesis and Electronic Structure. Inorganic Chemistry, 1998, 37, 5282-5288.	1.9	72
140	Synthesis and reactivity of cobalt boryl complexes. Dalton Transactions, 2006, , 1370.	1.6	72
141	2,5â€Bis(<i>p</i> à€Râ€arylethynyl)rhodacyclopentadienes Show Intense Fluorescence: Denying the Presence of a Heavy Atom. Angewandte Chemie - International Edition, 2010, 49, 2349-2353.	7.2	72
142	DFT Studies on the Mechanisms of the Platinum-Catalyzed Diboration of Acyclic $\hat{l}\pm\langle i\rangle,\langle i\rangle\hat{l}^2\langle i\rangle-\langle i\rangle$ Unsaturated Carbonyl Compounds. Organometallics, 2012, 31, 3410-3425.	1.1	72
143	Platinum-catalysed 1,4-diboration of 1,3-dienes. Journal of the Chemical Society Dalton Transactions, 1998, , 1431-1438.	1.1	70
144	Blending Gelators to Tune Gel Structure and Probe Anionâ€Induced Disassembly. Chemistry - A European Journal, 2014, 20, 279-291.	1.7	69

#	Article	IF	CITATIONS
145	B–B bond activation and NHC ring-expansion reactions of diboron(4) compounds, and accurate molecular structures of B ₂ (NMe ₂) ₄ , B ₂ eg ₂ pin ₂ . Dalton Transactions, 2017, 46, 3661-3680.	1.6	69
146	Studies of the S1 state in a prototypical molecular wire using picosecond time-resolved spectroscopiesElectronic supplementary information (ESI) available: time-resolved emission spectra, and transient absorption spectra. See http://www.rsc.org/suppdata/cc/b3/b307005k/. Chemical Communications, 2003, , 2406.	2.2	68
147	Unusual Size Dependence of Nonradiative Charge Recombination Rates in Acetylene-Bridged Compounds. Journal of Physical Chemistry A, 1997, 101, 1689-1695.	1.1	66
148	Mechanism of the Palladium-Catalyzed Borylation of Aryl Halides with Pinacolborane. Organometallics, 2010, 29, 1849-1857.	1.1	66
149	Cyclic (Alkyl)(Amino)Carbene Complexes of Rhodium and Nickel and Their Steric and Electronic Parameters. Chemistry - A European Journal, 2016, 22, 11005-11014.	1.7	66
150	Synthesis and Photophysics of a 2,7-Disubstituted Donor–Acceptor Pyrene Derivative: An Example of the Application of Sequential Ir-Catalyzed C–H Borylation and Substitution Chemistry. Journal of Organic Chemistry, 2015, 80, 5658-5665.	1.7	64
151	Copper(II)-Catalyzed Room Temperature Aerobic Oxidation of Hydroxamic Acids and Hydrazides to Acyl-Nitroso and Azo Intermediates, and Their Diels–Alder Trapping. Organic Letters, 2011, 13, 3442-3445.	2.4	62
152	Acylboranes: synthetic strategies and applications. Organic and Biomolecular Chemistry, 2017, 15, 1738-1752.	1.5	62
153	Phosphine promoted substituent redistribution reactions of B-chlorocatechol borane: molecular structures of ClBcat, BrBcat and LÂ-ClBcat (catâ€=â€1,2-O2C6H4; Lâ€=â€PMe3, PEt3, PBut3, PCy3, NETransactions RSC, 2001, , 1201-1209.	t3) æ 3Dalt	ton 61
154	Reversible Oxidative Addition at Carbon. Angewandte Chemie - International Edition, 2017, 56, 10209-10213.	7.2	60
155	Ni-Catalyzed Traceless, Directed C3-Selective C–H Borylation of Indoles. Journal of the American Chemical Society, 2020, 142, 13136-13144.	6.6	60
156	(Hetero)arene-fused boroles: a broad spectrum of applications. Chemical Science, 2021, 12, 128-147.	3.7	60
157	Synthesis and molecular structures of α-diimines and their zinc and palladium dichloride complexes. Polyhedron, 2004, 23, 2789-2795.	1.0	57
158	Synthesis, optical properties, crystal structures and phase behaviour of selectively fluorinated 1,4-bis(4?-pyridylethynyl)benzenes, 4-(phenylethynyl)pyridines and 9,10-bis(4?-pyridylethynyl)anthracene, and a Zn(NO3)2 coordination polymer. Journal of Materials Chemistry, 2004, 14, 2395.	6.7	57
159	Structural Analysis of Five-Coordinate Transition Metal Boryl Complexes with Different d-Electron Configurations. Inorganic Chemistry, 2004, 43, 2541-2547.	1.9	57
160	Oxidative Addition of Xâ^'H (X = C, N, O) Bonds to $[Ir(PMe3)4]Cl$ and Catalytic Hydration of Acetonitrile Using its Peroxo Derivative, $[Ir(O2)(PMe3)4]Cl$, as Catalyst Precursor. Organometallics, 2009, 28, 2904-2914.	1,1	57
161	Preparation, Properties, and Structures of the Radical Anions and Dianions of Azapentacenes. Journal of the American Chemical Society, 2017, 139, 15968-15976.	6.6	57
162	Synthesis and evaluation of synthetic retinoid derivatives as inducers of stem cell differentiation. Organic and Biomolecular Chemistry, 2008, 6, 3497.	1.5	56

#	Article	IF	CITATIONS
163	Visible-Light-Induced Ni-Catalyzed Radical Borylation of Chloroarenes. Journal of the American Chemical Society, 2020, 142, 18231-18242.	6.6	56
164	Ir-Catalyzed Direct Borylation at the 4-Position of Pyrene. Journal of Organic Chemistry, 2012, 77, 7124-7128.	1.7	55
165	Synthesis of Benzyl-, Allyl-, and Allenyl-boronates via Copper-Catalyzed Borylation of Alcohols. Organic Letters, 2017, 19, 1204-1207.	2.4	55
166	Kinetics and mechanism of CO ligand substitution in the ring-substituted indenyl rhodium complexes [(η5-C9RnH7â-'n)Rh(CO)2]. Inorganica Chimica Acta, 1992, 198-200, 219-231.	1.2	54
167	Effective Pd-Nanoparticle (PdNP)-Catalyzed Negishi Coupling Involving Alkylzinc Reagents at Room Temperature. Organic Letters, 2008, 10, 2661-2664.	2.4	54
168	A leap ahead for activating C-H bonds. Science, 2015, 349, 473-474.	6.0	54
169	Copperâ€Catalyzed Triboration of Terminal Alkynes Using B ₂ pin ₂ : Efficient Synthesis of 1,1,2â€Triborylalkenes. Angewandte Chemie - International Edition, 2020, 59, 304-309.	7.2	54
170	Facile Route to Highly Fluorescent 9,10-Bis(p-R-phenylethynyl)anthracene Chromophores via Palladium-Copper Catalyzed Cross-Coupling. Synlett, 1994, 1994, 299-301.	1.0	53
171	Methacrylate Polymerization using a Dinuclear Zirconocene Initiator: A New Approach for the Controlled Synthesis of Methacrylate Polymers. Angewandte Chemie - International Edition, 2004, 43, 5523-5526.	7.2	53
172	Comparisons of Photoinduced Oxidative Addition of Bâ^'H, Bâ^'B, and Siâ^'H Bonds at Rhodium(Î-5-cyclopentadienyl)phosphine Centers. Organometallics, 2006, 25, 5093-5104.	1.1	53
173	Acceleration of Reductive Elimination of [Arâ€Pdâ€C] by a Phosphine/Electronâ€Deficient Olefin Ligand: A Kinetic Investigation. Chemistry - A European Journal, 2009, 15, 3823-3829.	1.7	53
174	Synthetic Retinoids: Structure–Activity Relationships. Chemistry - A European Journal, 2009, 15, 11430-11442.	1.7	53
175	Electronic structure and photoelectron spectroscopy of d8 rhodium indenyl complexes. Organometallics, 1993, 12, 3688-3697.	1.1	50
176	Preparation and structure of cis-[Pt(BF2)2(PPh3)2]: the first crystallographically characterised complex containing the BF2 ligand. Chemical Communications, 1998, , 319-320.	2.2	50
177	Synthesis of Vinyl-, Allyl-, and 2-Boryl Allylboronates via a Highly Selective Copper-Catalyzed Borylation of Propargylic Alcohols. Organic Letters, 2017, 19, 6586-6589.	2.4	50
178	Synthesis, Photophysical, and Electrochemical Properties of Pyrenes Substituted with Donors or Acceptors at the 4- or 4,9-Positions. Journal of Organic Chemistry, 2018, 83, 3599-3606.	1.7	50
179	The hapticity of î-indenyl complexes: molecular structures of [(î·5-C9R7)Rh(î·4-cod)](R = H, Me)(cod =) Tj ETQq1 1	0.784314 2.0	1 4 ₄ gBT /Ove
180	Synthesis and optical characterisation of platinum(ii) poly-yne polymers incorporating substituted 1,4-diethynylbenzene derivatives and an investigation of the intermolecular interactions in the diethynylbenzene molecular precursorsElectronic supplementary information (ESI) available: atomic cooordinates for 6 and 7. See http://www.rsc.org/suppdata/nj/b2/b206946f/. New Journal of Chemistry, 2003, 27, 140-149.	1.4	49

#	Article	IF	CITATIONS
181	Synthetic, structural, photophysical and computational studies on 2-arylethynyl-1,3,2-diazaboroles. Dalton Transactions, 2009, , 2823.	1.6	49
182	Multidirectional Synthesis of Substituted Indazoles via Iridium-Catalyzed C–H Borylation. Journal of Organic Chemistry, 2015, 80, 5308-5314.	1.7	49
183	Boron–boron bond oxidative addition to rhodium(I) and iridium(I) centres. Journal of the Chemical Society Dalton Transactions, 1998, , 301-310.	1.1	48
184	The Effect of Branching on the One―and Twoâ€Photon Absorption, Cell Viability, and Localization of Cationic Triarylborane Chromophores with Dipolar versus Octupolar Charge Distributions for Cellular Imaging. Chemistry - A European Journal, 2019, 25, 13164-13175.	1.7	48
185	Copper-Catalyzed Synthesis of Stereodefined Cyclopropyl Bis(boronates) from Alkenes with CO as the C1 Source. Journal of the American Chemical Society, 2020, 142, 14074-14079.	6.6	48
186	Activation of dichloromethane by basic rhodium(I) and iridium(I) phosphine complexes. Synthesis and structures of fac-[Rh(PMe3)3Cl2(CH2PMe3)]Cl·CH2Cl2and trans-[Rh(Me2PCH2CH2PMe2)2Cl(CH2Cl)]Cl. Journal of the Chemical Society Chemical Communications, 1987, , 1543-1545.	2.0	47
187	Dimesitylborane monomer-dimer equilibrium in solution, and the solid-state structure of the dimer by single crystal neutron and X-ray diffraction. Journal of Organometallic Chemistry, 2003, 680, 165-172.	0.8	47
188	Pressure-Induced Polymerization of Polycyclic Arene–Perfluoroarene Cocrystals: Single Crystal X-ray Diffraction Studies, Reaction Kinetics, and Design of Columnar Hydrofluorocarbons. Journal of the American Chemical Society, 2020, 142, 18907-18923.	6.6	47
189	Inducedâ€Fit Binding of Ï€â€Electronâ€Donor Substrates to Macrocyclic Aromatic Ether Imide Sulfones: A Versatile Approach to Molecular Assembly. Chemistry - A European Journal, 2010, 16, 907-918.	1.7	46
190	Facile insertion of a cyclic alkyl(amino) carbene carbon into the B–B bond of diboron(4) reagents. Chemical Communications, 2017, 53, 11694-11696.	2.2	46
191	Optimization of Aqueous Stability versus Ï€â€Conjugation in Tetracationic Bis(triarylborane) Chromophores: Applications in Liveâ€Cell Fluorescence Imaging. Chemistry - A European Journal, 2019, 25, 7679-7688.	1.7	46
192	Optical properties of donor–acceptor phenylene-ethynylene systems containing the 6-methylpyran-2-one group as an acceptor. Chemical Communications, 2005, , 2666.	2.2	45
193	Synthesis of Thioureaâ^'Oxazolines, a New Class of Chiral S,N-Heterobidentate Ligands:  Application in Pd-Catalyzed Asymmetric Bis(methoxycarbonylation) of Terminal Olefins. Organometallics, 2007, 26, 4756-4762.	1.1	45
194	Synthesis, photophysical and electronic properties of tetra-donor- or acceptor-substituted <> or tho <> i> -perylenes displaying four reversible oxidations or reductions. Chemical Science, 2019, 10, 7516-7534.	3.7	45
195	An unusual rotational distortion in an [(Îindenyl)RhL2] complex: molecular structures of [(Î1,2,3-Me3C9H4)Rh(ÎC2H4)2] and [(ÎC9H7)Rh(CO)2]. Journal of the Chemical Society Chemical Communications, 1989, , 990-992.	2.0	44
196	\hat{l}_{\pm} -Aminoboronates: recent advances in their preparation and synthetic applications. Chemical Society Reviews, 2021, 50, 12151-12188.	18.7	44
197	Computational Insight into Nickelâ€Catalyzed Carbon–Carbon versus Carbon–Boron Coupling Reactions of Primary, Secondary, and Tertiary Alkyl Bromides. Chemistry - A European Journal, 2015, 21, 7480-7488.	1.7	43
198	Iridium-Catalyzed Borylation of Pyrene: Irreversibility and the Influence of Ligand on Selectivity. Journal of Organic Chemistry, 2015, 80, 661-665.	1.7	42

#	Article	IF	CITATIONS
199	Bromination Improves the Electron Mobility of Tetraazapentacene. Angewandte Chemie - International Edition, 2018, 57, 9543-9547.	7.2	42
200	Synthetic Approaches to Triarylboranes from 1885 to 2020. Chemistry - A European Journal, 2021, 27, 7043-7058.	1.7	42
201	Transition Metal Acetylides for Nonlinear Optical Properties. ACS Symposium Series, 1991, , 605-615.	0.5	41
202	Arene–perfluoroarene interactions in crystal engineering. Part 10. Crystal structures of 1∶1 complexes of octafluoronaphthalene with biphenyl and biphenylene. CrystEngComm, 2004, 6, 25-28.	1.3	41
203	Synthesis, photophysics and molecular structures of luminescent 2,5-bis(phenylethynyl)thiophenes (BPETs). New Journal of Chemistry, 2007, 31, 841-851.	1.4	41
204	Nearâ€Infrared Quadrupolar Chromophores Combining Threeâ€Coordinate Boronâ€Based Superdonor and Superacceptor Units. Angewandte Chemie - International Edition, 2019, 58, 6449-6454.	7.2	41
205	The synthesis and crystal structures of halogenated tolans p-X–C6H4–Cî€,C–C6F5and p-X–C6F4–Cî€,C–C6H5(X = F, Cl, Br, I). Organic and Biomolecular Chemistry, 2004, 2, 3172-3178.	1.5	40
206	Synthesis, optical properties, crystal structures and phase behaviour of symmetric, conjugated ethynylarene-based rigid rods with terminal carboxylate groups. Journal of Materials Chemistry, 2005, 15, 690-697.	6.7	40
207	DFT Studies of \hat{I}^2 -Boryl Elimination Processes: \hat{A} Potential Role in Catalyzed Borylation Reactions of Alkenes. Organometallics, 2007, 26, 3149-3156.	1.1	40
208	Mechanisms of Reactions of a Lithium Boryl with Organohalides. Organometallics, 2011, 30, 3018-3028.	1.1	40
209	Selfâ€Assembly of 9,10â€Bis(phenylethynyl) Anthracene (BPEA) Derivatives: Influence of π–π and Hydrogenâ€Bonding Interactions on Aggregate Morphology and Selfâ€Assembly Mechanism. Chemistry - A European Journal, 2017, 23, 6198-6205.	1.7	40
210	Applications of triarylborane materials in cell imaging and sensing of bio-relevant molecules such as DNA, RNA, and proteins. Materials Horizons, 2022, 9, 112-120.	6.4	40
211	Oxidative addition of a Bâ€"B bond by an iridium(I) complex: molecular structure of mer-cis-[Ir(PMe3)3Cl(Bcat)2]. Canadian Journal of Chemistry, 1996, 74, 2026-2031.	0.6	39
212	Copperâ€Catalyzed Triboration: Straightforward, Atomâ€Economical Synthesis of 1,1,1â€Triborylalkanes from Terminal Alkynes and HBpin. Angewandte Chemie - International Edition, 2019, 58, 18923-18927.	7.2	39
213	Copper-catalysed borylation of aryl chlorides. Organic and Biomolecular Chemistry, 2019, 17, 6601-6606.	1.5	39
214	Computationally Guided Molecular Design to Minimize the LE/CT Gap in Dâ€Ï€â€A Fluorinated Triarylboranes for Efficient TADF via D and Ï€â€Bridge Tuning. Advanced Functional Materials, 2020, 30, 2002064.	7.8	39
215	Fluorinated Aryl Boronates as Building Blocks in Organic Synthesis. Advanced Synthesis and Catalysis, 2021, 363, 2224-2255.	2.1	39
216	Reaction between rhodium(iii) bisboryls and diborane(4) compounds: evidence for a Ï,-bond metathesis process. Chemical Communications, 1997, , 53-54.	2.2	38

#	Article	IF	CITATIONS
217	Stoichiometric and Catalytic Arylâ^'Cl Activation and Borylation using NHCâ€stabilized Nickel(0) Complexes. Chemistry - A European Journal, 2019, 25, 9514-9521.	1.7	38
218	Syntheses, Structures, and Comparison of the Photophysical Properties of Cyclometalated Iridium Complexes Containing the Isomeric 1- and 2-(2′-pyridyl)pyrene Ligands. Inorganic Chemistry, 2013, 52, 9842-9860.	1.9	37
219	Copperâ€Catalysed Suzukiâ€Miyaura Crossâ€Coupling of Highly Fluorinated Aryl Boronate Esters with Aryl Iodides and Bromides and Fluoroareneâ^'Arene Ï€â€Stacking Interactions in the Products. ChemCatChem, 2019, 11, 5387-5396.	1.8	37
220	Metallacarboranes in catalysis. 5. Interconversion of closo-bis(phosphine)hydridorhodacarboranes by rhodium transfer between .etanido-carborane anions. Journal of the American Chemical Society, 1984, 106, 3004-3010.	6.6	36
221	Regiospecific high yield reductive coupling of diynesto give a luminescent rhodium complex. Chemical Communications, 2001, , 2626-2627.	2.2	36
222	Synthesis and structure of indenyl rhodium(I) complexes containing unsaturated phosphines: catalyst precursors for alkene hydroboration. Dalton Transactions, 2009, , 1624.	1.6	36
223	The Radical Anion and Dianion of Tetraazapentacene. Angewandte Chemie - International Edition, 2016, 55, 10498-10501.	7.2	36
224	Coligand role in the NHC nickel catalyzed C–F bond activation: investigations on the insertion of bis(NHC) nickel into the C–F bond of hexafluorobenzene. Chemical Science, 2020, 11, 11009-11023.	3.7	36
225	Synthesis of RhI- I_f -acetylide complexes in aqueous and non-aqueous solutions: molecular structures of [(PMe3)4Rh(Cî \in ,CPh)] and [(PMe3)3Rh(Cî \in ,CSiMe3)]. Journal of the Chemical Society Chemical Communications, 1989, , 540-544.	2.0	35
226	Electronic Spectra of the Nanostar Dendrimer: Theory and Experiment. Journal of Physical Chemistry C, 2010, 114, 20702-20712.	1.5	35
227	Highly Stable, Readily Reducible, Fluorescent, Trifluoromethylated 9â€Borafluorenes. Chemistry - A European Journal, 2020, 26, 12794-12808.	1.7	35
228	A simple "palladium-free―synthesis of phenyleneethynylene-based molecular materials revisited. New Journal of Chemistry, 2005, 29, 972.	1.4	34
229	"One-Pot―Tandem Câ^'H Borylation/1,4-Conjugate Addition/Reduction Sequence. Organic Letters, 2010, 12, 5700-5703.	2.4	33
230	Fluorescence in Rhoda- and Iridacyclopentadienes Neglecting the Spin–Orbit Coupling of the Heavy Atom: The Ligand Dominates. Inorganic Chemistry, 2014, 53, 7055-7069.	1.9	33
231	Palladium-Catalyzed Oxidative Borylation of Allylic C–H Bonds in Alkenes. Organic Letters, 2017, 19, 6590-6593.	2.4	33
232	Synthesis, Photophysical and Electronic Properties of New Redâ€toâ€NIR Emitting Donor–Acceptor Pyrene Derivatives. Chemistry - A European Journal, 2020, 26, 438-453.	1.7	33
233	A Quadrupolar Bisâ€∓riarylborane Chromophore as a Fluorimetric and Chirooptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins. Chemistry - A European Journal, 2020, 26, 2195-2203.	1.7	33
234	Reactions of thexylborane with (phosphine)rhodium hydride, alkyl and allyl complexes. Organometallics, 1990, 9, 3028-3030.	1.1	32

#	ARTICLE Two contrasting ethynyl hydroboration pathways in the formation of a novel tris-hydroboration	IF	Citations
235	product from reaction of dimesitylborane with 2,5-diethynylpyridineElectronic supplementary information (ESI) available: NMR data for 4, rotatable 3-D molecular structure diagrams of optimised geometries in CHIME format and energy data for optimised geometries. See	2.2	32
236	C-H rather than O–H activation: synthesis and molecular structure of a cationic cis-hydrido-σ-acetylide complex of rhodium. Journal of the Chemical Society Chemical Communications, 1987, , 1484-1485.	2.0	31
237	Mechanistic studies of the rhodium-catalysed cyclization of $\hat{l}\pm, j\%$ -alkynoci acids to alkylidene lactones. Crystals structures of two iridium model catalytic intermediates. Journal of the Chemical Society Chemical Communications, 1987, , 1885-1887.	2.0	31
238	Metal boryl compounds and metal-catalysed borylation processes: synthetic applications and mechanistic considerations. Organometallic Chemistry, 0, , 46-57.	0.6	31
239	Synthesis and structure of the [Rh2(dmpe)4(.mudmpe)]2+ salt of the naked cyclopentadienyl anion: a comparison of the reactivity of [(.etaindenyl)Rh(.etaC2H4)2] and [(.etaC5H5)Rh(.etaC2H4)2]. Organometallics, 1989, 8, 1765-1768.	1.1	30
240	Photochemical oxidative addition of B–H bonds at ruthenium and rhodium. Chemical Communications, 2004, , 242-243.	2.2	30
241	Comparison Study of the Site-Effect on Regioisomeric Pyridyl–Pyrene Conjugates: Synthesis, Structures, and Photophysical Properties. Journal of Organic Chemistry, 2020, 85, 4256-4266.	1.7	30
242	Planar 64-electron butterfly clusters with elongated metal–metal bonds: synthesis and molecular structures of Ru4(CO)13(Âμ-PPh2)2and Ru4(CO)10(Âμ-PPh2)4. Journal of the Chemical Society Chemical Communications, 1988, , 1570-1572.	2.0	29
243	Tetracationic Bisâ€Triarylborane 1,3â€Butadiyne as a Combined Fluorimetric and Raman Probe for Simultaneous and Selective Sensing of Various DNA, RNA, and Proteins. Chemistry - A European Journal, 2020, 26, 6017-6028.	1.7	29
244	Metal Cluster Terminated "Molecular Wires― Journal of Cluster Science, 2006, 17, 65-85.	1.7	28
245	Regiospecific Formation and Unusual Optical Properties of 2,5â€Bis(arylethynyl)rhodacyclopentadienes: A New Class of Luminescent Organometallics. Chemistry - A European Journal, 2014, 20, 3652-3666.	1.7	28
246	Palladium-Catalyzed Homocoupling of Highly Fluorinated Arylboronates: Studies of the Influence of Strongly vs Weakly Coordinating Solvents on the Reductive Elimination Process. Journal of the American Chemical Society, 2020, 142, 6036-6050.	6.6	28
247	Phenylpyridylâ€Fused Boroles: A Unique Coordination Mode and Weak Bâ^'N Coordinationâ€Induced Dual Fluorescence. Angewandte Chemie - International Edition, 2021, 60, 4833-4840.	7.2	28
248	1:1 Complexes of octafluoronaphthalene with trans-stilbene and trans-azobenzene. Journal of Fluorine Chemistry, 2005, 126, 513-517.	0.9	27
249	Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways. Nature Communications, 2019, 10, 4735.	5.8	27
250	Triarylboraneâ€Based Helical Donor–Acceptor Compounds: Synthesis, Photophysical, and Electronic Properties. Chemistry - A European Journal, 2019, 25, 10845-10857.	1.7	27
251	<i>Nâ€</i> Heterocyclic Silylenes as Ligands in Transition Metal Carbonyl Chemistry: Nature of Their Bonding and Supposed Innocence. Chemistry - A European Journal, 2020, 26, 11276-11292.	1.7	27
252	Synthesis of hydrido-bis(acetylide) complexes of rhodium and the molecular structures of mer-trans-[Rh(PMe3)3(H)(CCPh)2] and mer-trans-[{Rh(dmpe)(H)(CCSiMe3)2}2(Âμ-dmpe)](dmpe =) Tj E	ГQq 2.0 0 r	gBT2 /O verlock

#	Article	IF	Citations
253	Novel Siliconâ€Containing Analogues of the Retinoid Agonist Bexarotene: Syntheses and Biological Effects on Human Pluripotent Stem Cells. ChemMedChem, 2011, 6, 1509-1517.	1.6	26
254	Regio―and Stereoselective Synthesis of 1,1â€Diborylalkenes via BrÃ,nsted Baseâ€Catalyzed Mixed Diboration of Alkynyl Esters and Amides with BpinBdan. European Journal of Organic Chemistry, 2020, 2020, 1941-1946.	1.2	26
255	Dalton communications. Organometallic liquid crystals based on octahedral rhodium(III). Journal of the Chemical Society Dalton Transactions, 1995, , 317.	1.1	25
256	Retinoid supplementation of differentiating human neural progenitors and embryonic stem cells leads to enhanced neurogenesis in vitro. Journal of Neuroscience Methods, 2010, 193, 239-245.	1.3	25
257	Palladium(ii)-catalysed tandem cyclisation of electron-deficient aromatic enynes. Chemical Communications, 2012, 48, 9986.	2.2	25
258	Fully Borylated Methane and Ethane by Rutheniumâ€Mediated Cleavage and Coupling of CO. Angewandte Chemie - International Edition, 2016, 55, 4707-4710.	7.2	25
259	Facile displacement of an î·5-indenyl ligand. Crystal structure of the [Rh(Me2PCH2CH2PMe2)2]+salt of the naked indenyl anion. Journal of the Chemical Society Chemical Communications, 1987, , 1478-1480.	2.0	24
260	Structural Versatility of Pyrene-2-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane) and Pyrene-2,7-bis(4,4,5,5-tetramethyl-[1,3,2]dioxaborolane). Crystal Growth and Design, 2012, 12, 2794-2802.	1.4	24
261	Design and biological evaluation of synthetic retinoids: probing length vs. stability vs. activity. Molecular BioSystems, 2013, 9, 3124.	2.9	24
262	Reductive Coupling of Diynes at Rhodium Gives Fluorescent Rhodacyclopentadienes or Phosphorescent Rhodium 2,2'â€Biphenyl Complexes. Chemistry - A European Journal, 2016, 22, 10523-1053	2. ^{1.7}	24
263	complexes of octafluorocyclooctatetraene. Crystal and molecular structures of [Rh(.eta.5-C9H7)(1,2,5,6etaC8F8)], [[Rh(.eta.5-C9H7)]2[.mu(1,5,6etaC8F8)](Rh-Rh)], [[Rh(.eta.5-C9H7)]2[.mu(1,5,6eta.:2-4etaC8F7H)](Rh-Rh)], and		

#	Article	IF	CITATIONS
271	Synthesis of heptamethylindenyl rhodium(III) complexes: molecular structures of $[(\hat{l}\cdot 5-C9Me7)RhCl(\hat{A}\mu-Cl)]2$ and $[(\hat{l}\cdot 5-C9Me7)Rh(PMe2Ph)Cl2]$. Canadian Journal of Chemistry, 1995, 73, 981-988.	0.6	22
272	Mechanism of Formation of [(PMe3)3Rh(â^'Câ^®Câ^'R)2(H)] via Câ^'H Oxidative Addition:Â Isomerization, Alkyne Exchange, and Hydride Replacement. Organometallics, 2002, 21, 429-437.	1.1	22
273	Persistent Room Temperature Phosphorescence from Triarylboranes: A Combined Experimental and Theoretical Study. Angewandte Chemie, 2020, 132, 17285-17292.	1.6	22
274	High photocatalytic activity of a NiO nanodot-decorated Pd/SiC catalyst for the Suzuki-Miyaura cross-coupling of aryl bromides and chlorides in air under visible light. Journal of Catalysis, 2020, 389, 517-524.	3.1	22
275	Pyreneâ€Based "Turnâ€Off―Probe with Broad Detection Range for Cu ²⁺ , Pb ²⁺ and Hg ²⁺ Ions. Chemistry - A European Journal, 2021, 27, 8118-8126.	d 1.7	22
276	Pure Boric Acid Does Not Show Roomâ€Temperature Phosphorescence (RTP). Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
277	FBpin and its adducts and their role in catalytic borylations. Faraday Discussions, 2019, 220, 350-363.	1.6	21
278	Chemistry of di-and tri-metal complexes with bridging carbene or carbyne ligands. Part 37. Methylene group transfer to carbon–metal multiple bonds; crystal structures of [TiW{Âμ-C(C6H4Me-4)CH2}(ĈO)2(PMe3)2(ÎC5H5)3] and [PtW{Âμ-C(C6H4Me-4)CH2}(CO)2(PMe3)2(ÎC5H5)4] Journal of the Chemical Society Dalton Transactions, 1985, , 2009-2016.	1 ¹ / ₅) ¹ .	20
279	Synthesis, characterisation and molecular structure of [Rh(COE)2(acac)] (COE=cyclooctene, î·2-C8H14), an important starting material for the preparation of rhodium catalyst precursors. Journal of Organometallic Chemistry, 2002, 649, 199-203.	0.8	20
280	Proteomic profiling of the stem cell response to retinoic acid and synthetic retinoid analogues: identification of major retinoid-inducible proteins. Molecular BioSystems, 2009, 5, 458.	2.9	20
281	Reversible oxidative Addition an Kohlenstoff. Angewandte Chemie, 2017, 129, 10343-10347.	1.6	20
282	Copper(I) complexes of N-alkyl-substituted N-Heterocyclic carbenes. Journal of Organometallic Chemistry, 2019, 881, 25-33.	0.8	20
283	Thermodynamic equilibrium between locally excited and charge-transfer states through thermally activated charge transfer in 1-(pyren- $2\hat{a}\in^2$ -yl)- <i>o</i>)- <iron 1-(pyren-<math="" charge="" in="" of="" property="" the="" transfer="">2\hat{a}\in^2-yl)-<i>o</i>)-<iron 1-(pyren-<math="" charge="" in="" of="" property="" the="" transfer="">2\hat{a}\in^2-yl)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i>o</i>)-<i></i></iron></iron></iron></iron></iron></iron>	3.7	20
284	Synthetic and structural studies on Group 13 complexes containing the $M(CO)3(\hat{l}-C5H5)$ fragment (M =) Tj ETQqC Transactions, 1991, , 2229-2239.		/Overlock 1 19
285	Crystal engineering with p-substituted 4-ethynylbenzenes using the C–Hâ√O supramolecular synthon. CrystEngComm, 2004, 6, 184-188.	1.3	19
286	Kupferâ€katalysierte Triborierung terminaler Alkine mit B 2 pin 2 : Effiziente Synthese von 1,1,2â€Triborylalkenen. Angewandte Chemie, 2020, 132, 311-316.	1.6	19
287	Arene \hat{A} —perfluoroarene interactions in crystal engineering. Part 14. 1:1 Complexes of octafluoronaphthalene with fluorene and 9,10-dihydrophenanthrene. Canadian Journal of Chemistry, 2006, 84, 238-242.	0.6	18
288	An Experimental and Computational Approach to Understanding the Reactions of Acyl Nitroso Compounds in [4 + 2] Cycloadditions. Journal of Organic Chemistry, 2015, 80, 9518-9534.	1.7	18

#	Article	IF	CITATIONS
289	Bis(phenylethynyl)arene Linkers in Tetracationic Bisâ€triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry - A European Journal, 2021, 27, 5142-5159.	1.7	18
290	An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers. Chemistry - A European Journal, 2020, 26, 12951-12963.	1.7	18
291	The syntheses, structures and redox properties of phosphine-gold(I) and triruthenium-carbonyl cluster derivatives of tolans. Inorganica Chimica Acta, 2008, 361, 1646-1658.	1.2	17
292	Cascades of catalytic selectivity. Nature Chemistry, 2014, 6, 279-280.	6.6	17
293	Correlations and Contrasts in Homo―and Heteroleptic Cyclic (Alkyl)(amino)carbeneâ€Containing Pt ⁰ Complexes. Chemistry - A European Journal, 2015, 21, 12357-12362.	1.7	17
294	Reactivity of Tetrahalo- and Difluorodiboranes(4) toward Lewis Basic Platinum(0): Bis(boryl), Borylborato, and Doubly Boryl-Bridged Platinum Complexes. Journal of the American Chemical Society, 2018, 140, 13056-13063.	6.6	17
295	Photoactivated cell-killing involving a low molecular weight, donor–acceptor diphenylacetylene. Chemical Science, 2019, 10, 4673-4683.	3.7	17
296	Dreifach koordiniertes Bor als Superdonor und â€akzeptor für quadrupolare Nahinfrarotâ€Chromophore. Angewandte Chemie, 2019, 131, 6516-6521.	1.6	17
297	The Borono–Strecker Reaction: Synthesis of α-Aminoboronates via a Multicomponent Reaction of Carbonyl Compounds, Amines, and B ₂ pin ₂ . Organic Letters, 2020, 22, 365-370.	2.4	17
298	NHC-stabilized copper(I) aryl complexes and their transmetalation reaction with aryl halides. Journal of Organometallic Chemistry, 2020, 919, 121249.	0.8	17
299	Niâ€Catalyzed Borylation of Aryl Sulfoxides. Chemistry - A European Journal, 2021, 27, 8149-8158.	1.7	17
300	N–B ↕N Bridged Bithiophene: A Building Block with Reduced Band Gap to Design n-Type Conjugated Polymers. Macromolecules, 2021, 54, 6718-6725.	2.2	17
301	Synthetic and structural studies on organoruthenium–indium complexes. Journal of the Chemical Society Dalton Transactions, 1992, , 3525-3529.	1.1	16
302	2,2′-Bipyridyl and 1,10-phenanthroline adducts of the diborane (4) compound B2 (1,2-S2C6H4)2. Polyhedron, 1998, 17, 4139-4143.	1.0	16
303	Crystal engineering with ethynylbenzenes : Part 2. Structures of 4-trimethylsilylethynyl-N,N-dimethylaniline, and 4-ethynyl-N,N-dimethylaniline with Z′ = 12 and a single-crystal to single-crystal phase transition at 122.5 ± 2 K. CrystEngComm, 2006, 8, 622-628.	1.3	16
304	Tetrabromtetraazapentacen: erhöhte Elektronenbeweglichkeit. Angewandte Chemie, 2018, 130, 9688-9692.	1.6	16
305	NHC induced radical formation⟨i⟩via⟨ i⟩homolytic cleavage of Bâ€"B bonds and its role in organic reactions. Chemical Science, 2022, 13, 8321-8333.	3.7	16
306	Stereochemical non-rigidity of the indenyl ligand in the compound [CrRh(µ-CO)2(CO)2(ÎC9H7)(ÎC6H3Me3-1,3,5)]. Journal of the Chemical Society Dalton Transactions, 1984, , 1261-1263.	1.1	15

#	Article	IF	Citations
307	Why are B2O2 rings rare?. Chemical Communications, 2000, , 2217-2218.	2.2	15
308	Copperâ€Catalyzed Oxidative Crossâ€Coupling of Electronâ€Deficient Polyfluorophenylboronate Esters with Terminal Alkynes. Chemistry - A European Journal, 2020, 26, 17267-17274.	1.7	15
309	The role of saturated transition metal carbonyl complexes as Ï€-acid ligands; a theoretical investigation of the bonding in [Cr(Âμ-CO)2(CO)(ÎC6H6)Rh(CO)(ÎC5Me5)] and (Co)(Âμ-CO)2(ÎC5H5)Rh(PH3)(ÎC5H5)]. Journal of the Chemical Society Chemical Communications, 1984, ,	2.0	14
310	The analogy between alkenes and the dinuclear species [MRh(Â μ -CO)2(Î-C5Me5)2](M = Co or Rh); dynamic nuclear magnetic resonance, X-ray crystallographic, and extended-HÂ 1 4ckel molecular-orbital studies of the bonding between unsaturated CoRh and Rh2fragments and the pentacarbonylmolybdenum group. Journal of the Chemical Society Dalton Transactions, 1984, , 2757-2763.	1.1	14
311	Synthesis and molecular structures of a rhoda-lactone and its alkylation product; insertion of a pendant alkyne into a rhodium–hydrogen bond. Journal of the Chemical Society Chemical Communications, 1988, , 996-998.	2.0	14
312	Octafluoronaphthalene–diphenylacetylene (1/1). Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 870-872.	0.4	14
313	Steric Effects Dictate the Formation of Terminal Arylborylene Complexes of Ruthenium from Dihydroboranes. Chemistry - A European Journal, 2019, 25, 13566-13571.	1.7	14
314	Nâ∈Heterocyclic Olefins as Electron Donors in Combination with Triarylborane Acceptors: Synthesis, Optical and Electronic Properties of Dâ∈"Ï€â∈"A Compounds. Chemistry - A European Journal, 2019, 25, 13777-13784.	1.7	14
315	Visible-light-driven graphene supported Cu/Pd alloy nanoparticle-catalyzed borylation of alkyl bromides and chlorides in air. Journal of Catalysis, 2021, 395, 258-265.	3.1	14
316	Bithiopheneâ€Cored, <i>monoâ€</i> , <i>bisâ€</i> , and <i>trisâ€</i> (Trimethylammonium)â€Substituted, <i>bisâ€</i> Triarylborane Chromophores: Effect of the Number and Position of Charges on Cell Imaging and DNA/RNA Sensing. Chemistry - A European Journal, 2021, 27, 14057-14072.	1.7	14
317	Baseâ€Mediated Radical Borylation of Alkyl Sulfones. Chemistry - A European Journal, 2022, 28, .	1.7	14
318	Arene–perfluoroarene interactions in crystal engineering. 5 Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1306-1307.	0.4	13
319	Facile Alkene Insertion into a Rhodium(III)â°'Acetyl Bond:Â Potential Catalysts for CO/Alkene Copolymerization. Organometallics, 2004, 23, 5907-5909.	1.1	13
320	Tandem fluorescence and Raman (fluoRaman) characterisation of a novel photosensitiser in colorectal cancer cell line SW480. Analyst, The, 2018, 143, 6113-6120.	1.7	13
321	2―and 2,7‧ubstituted <i>para</i> â€ <i>N</i> â€Methylpyridinium Pyrenes: Syntheses, Molecular and Electronic Structures, Photophysical, Electrochemical, and Spectroelectrochemical Properties and Binding to Double‧tranded (ds) DNA. Chemistry - A European Journal, 2021, 27, 2837-2853.	1.7	13
322	Highly Emissive 9â€Borafluorene Derivatives: Synthesis, Photophysical Properties and Device Fabrication. Chemistry - A European Journal, 2021, 27, 6274-6282.	1.7	13
323	Rethinking Borole Cycloaddition Reactivity. Chemistry - A European Journal, 2021, 27, 11226-11233.	1.7	13
324	DFT studies on reactions of boroles with carbon monoxide. Organic and Biomolecular Chemistry, 2017, 15, 7019-7027.	1.5	12

#	Article	IF	Citations
325	Arene–perfluoroarene interactions in crystal engineering. 4 Acta Crystallographica Section C: Crystal Structure Communications, 2001, 57, 1303-1305.	0.4	11
326	Synthesis of new mer,trans-rhodium(III) hydrido-bis(acetylide) complexes: Structure of mer,trans-[(PMe3)3Rh(CC–C6H4-4-NMe2)2H]. Inorganica Chimica Acta, 2006, 359, 2859-2863.	1.2	11
327	Das Radikalanion und Dianion von Tetraazapentacen. Angewandte Chemie, 2016, 128, 10654-10657.	1.6	11
328	DFT Studies of Dimerization Reactions of Boroles. Chemistry - A European Journal, 2017, 23, 11587-11597.	1.7	11
329	Evidence of Increased Hydrophobicity and Dynamics inside the Tail Region of Glycolipid Self-Assemblies Using 2- <i>n</i> -Alkyl-Pyrene Derivatives to Probe Different Locations. Langmuir, 2019, 35, 9584-9592.	1.6	11
330	Electronically Driven Regioselective Iridium atalyzed Câ^'H Borylation of Donorâ€Ï€â€Acceptor Chromophores Containing Triarylboron Acceptors. Chemistry - A European Journal, 2020, 26, 10626-10633.	1.7	11
331	Baseâ€Free Pdâ€Catalyzed Câ^'Cl Borylation of Fluorinated Aryl Chlorides. Chemistry - A European Journal, 2021, 27, 3869-3874.	1.7	11
332	Direct observation of o-benzyne formation in photochemical hexadehydro-Diels–Alder (hν-HDDA) reactions. Chemical Science, 2020, 11, 9198-9208.	3.7	11
333	Cu-mediated <i>vs.</i> Cu-free selective borylation of aryl alkyl sulfones. Chemical Communications, 2022, 58, 395-398.	2.2	11
334	Ligand exchange processes of OsHCl(CO)(L)(PR3)2 (L=vacant, H2, R′CN, O2; R=Cy, i-Pr). Journal of Molecular Catalysis A, 1998, 135, 285-293.	4.8	10
335	Octafluoronaphthalene–1,8-diaminonaphthalene (1/1). Acta Crystallographica Section E: Structure Reports Online, 2001, 57, o950-o952.	0.2	10
336	DFT studies of the $ f $ -donor/ $ e $ -acceptor properties of [SnCB10H11] $ e $ and its relationship to [SnCl3] $ e $, CO, PF3, [SnB11H11] $ e $, SnC2B9H11, and related SnC2BnHn+2 compounds. Canadian Journal of Chemistry, 2009, 87, 63-71.	0.6	10
337	The role of magnetic nanoparticles (MNP) as reducing agents in an MNP-supported Pd–catalyst for the reductive homocoupling of aryl halides. Canadian Journal of Chemistry, 2012, 90, 138-144.	0.6	10
338	Synthesis and applications of 2,4-disubstituted thiazole derivatives as small molecule modulators of cellular development. Organic and Biomolecular Chemistry, 2013, 11, 2323.	1.5	10
339	Role of Intermolecular Interactions in the Excited-State Photophysics of Tetracene and 2,2 \hat{a} €2-Ditetracene. Journal of Physical Chemistry C, 2020, 124, 19435-19446.	1.5	10
340	One- and two-electron reduction of triarylborane-based helical donor–acceptor compounds. Chemical Science, 2021, 12, 11864-11872.	3.7	10
341	Synthesis of Highly Functionalizable Symmetrically and Unsymmetrically Substituted Triarylboranes from Benchâ€Stable Boron Precursors. Chemistry - A European Journal, 2021, 27, 9094-9101.	1.7	10
342	Arene–perfluoroarene interactions in crystal engineering. XV. Ferrocene–decafluorobiphenyl (1/1). Acta Crystallographica Section C: Crystal Structure Communications, 2006, 62, m229-m231.	0.4	9

#	Article	IF	CITATIONS
343	The synthesis and liquid crystalline behaviour of alkoxyâ€substituted derivatives of 1,4â€bis(phenylethynyl)benzene. Liquid Crystals, 2008, 35, 119-132.	0.9	9
344	A One-Pot, Single-Solvent Process for Tandem, Catalyzed C-H Borylation-Suzuki-Miyaura Cross-Coupling Sequences. Synlett, 2009, 2009, 147-150.	1.0	9
345	Toward Transitionâ€Metalâ€Templated Construction of Arylated B 4 Chains by Dihydroborane Dehydrocoupling. Chemistry - A European Journal, 2019, 25, 16544-16549.	1.7	9
346	Insights into the Optical Properties of Triarylboranes with Strongly Electronâ€Accepting Bis(fluoromesityl)boryl Groups: when Theory Meets Experiment. ChemPhotoChem, 2020, 4, 173-180.	1.5	9
347	Highly Conjugated Ï€â€Systems Arising from Cannibalistic Hexadehydroâ€Diels–Alder Couplings: Cleavage of Câ^'C Single and Triple Bonds. Chemistry - A European Journal, 2020, 26, 15989-16000.	1.7	9
348	Phenylpyridylâ€Fused Boroles: A Unique Coordination Mode and Weak Bâ^'N Coordinationâ€Induced Dual Fluorescence. Angewandte Chemie, 2021, 133, 4883-4890.	1.6	9
349	Peptide Vectors Carry Pyrene to Cell Organelles Allowing Realâ€√Time Quantification of Free Radicals in Mitochondria by Timeâ€Resolved Fluorescence Microscopy. ChemBioChem, 2021, 22, 1676-1685.	1.3	9
350	Transition Metal Catalystâ€Free, Baseâ€Promoted 1,2â€Additions of Polyfluorophenylboronates to Aldehydes and Ketones. Angewandte Chemie - International Edition, 2021, 60, 16529-16538.	7.2	9
351	Selective, Transition Metalâ€free 1,2â€Diboration of Alkyl Halides, Tosylates, and Alcohols. Chemistry - A European Journal, 2022, 28, .	1.7	9
352	A triangulo-triplatinum cluster with no bridging atom: the structure of [Pt3(2,6-Me2C6H3NC)2(Âμ-Ph2PCH2PPh2)3]2+. Journal of the Chemical Society Chemical Communications, 1990, , 1462-1464.	2.0	8
353	Tris(2-methylphenyl)phosphonium tetrachloroborate. Acta Crystallographica Section C: Crystal Structure Communications, 2000, 56, 1354-1355.	0.4	8
354	Synthesis and structure of an unusual di-rhodium diarylbutadiyne π-complex featuring a μ-(1,2-η2):(3,4-η2)-p-CF3C6H4–CC–CC–C6H4-p-CF3 moiety. Inorganica Chimica Acta, 2006, 359, 3671-36	6 1 .2 676.	8
355	Concise synthesis of α-amino cyclic boronates <i>via</i> multicomponent coupling of salicylaldehydes, amines, and B ₂ (OH) ₄ . Green Chemistry, 2020, 22, 2184-2190.	4.6	8
356	Synthesis, Photophysical and Electronic Properties of Monoâ€, Diâ€, and Triâ€Aminoâ€Substituted Orthoâ€Perylenes, and Comparison to the Tetraâ€Substituted Derivative. Chemistry - A European Journal, 2020, 26, 12050-12059.	1.7	8
357	Well-Defined Conjugated Rigid-Rods as Multifunctional Materials: Linear and Nonlinear Optical Properties and Liquid Crystalline Behavior. , 1995, , 333-347.		8
358	Fully Borylated Methane and Ethane by Rutheniumâ€Mediated Cleavage and Coupling of CO. Angewandte Chemie, 2016, 128, 4785-4788.	1.6	7
359	Convenient synthetic access to fluorescent rhodacyclopentadienes via ligand exchange reactions. Journal of Organometallic Chemistry, 2017, 847, 184-192.	0.8	7
360	Aggregationâ€Induced Dual Phosphorescence from (<i>>o</i> >â€Bromophenyl)â€Bis(2,6â€Dimethylphenyl)Borane at Room Temperature. Chemistry - A European Journal, 2022, 28, .	1.7	7

#	Article	IF	Citations
361	Methyl Viologens of Bisâ€(4'â€Pyridylethynyl)Arenes – Structures, Photophysical and Electrochemical Studies, and their Potential Application in Biology. Chemistry - A European Journal, 2022, 28, .	1.7	7
362	2,3,5,6-Tetrakis[3,5-bis(trifluoromethyl)phenoxy]-2,5-bis(dimethylamino)2,3,5,6-tetrabora-1,4-dioxane diethyl ether 0.667-solvate. Acta Crystallographica Section C: Crystal Structure Communications, 2007, 63, 0603-0605.	0.4	6
363	4,4′-Di-tert-butyl-2,2′-bipyridine–hexafluorobenzene (1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o1196-o1198.	0.2	6
364	Kupferkatalysierte Triborierung: Einfache, atomökonomische Synthese von 1,1,1â€Triborylalkanen aus terminalen Alkinen und HBpin. Angewandte Chemie, 2019, 131, 19099-19103.	1.6	6
365	Geometric Shape Regulation and Noncovalent Synthesis of One-Dimensional Organic Luminescent Nano-/Micro-Materials. Journal of Physical Chemistry Letters, 2017, 8, 3711-3717.	2.1	5
366	Mono―and Dianion of a Bis(benzobuta)tetraazapentacene Derivative. Chemistry - A European Journal, 2019, 25, 9840-9845.	1.7	5
367	Pure Boric Acid Does Not Show Roomâ€Temperature Phosphorescence (RTP). Angewandte Chemie, 2022, 134, .	1.6	5
368	Electronâ€Rich EDOT Linkers in Tetracationic bisâ€Triarylborane Chromophores: Influence on Water Stability, Biomacromolecule Sensing, and Photoinduced Cytotoxicity. Chemistry - A European Journal, 2022, 28, .	1.7	5
369	A new mitochondrial probe combining pyrene and a triphenylphosphonium salt for cellular oxygen and free radical detection via fluorescence lifetime measurements. Free Radical Research, 2022, 56, 258-272.	1.5	5
370	Oxidative addition of (bromoethynyl)benzene to \hat{i}^2 - acetylacetonatobis(trimethylphosphine)rhodium(I). Journal of Organometallic Chemistry, 2013, 730, 104-107.	0.8	4
371	Nitro End Groups: Remarkable Vibrational Reporters for Charge Transfer in the Excited States of Oligo(<i>p</i> -phenyleneethynylene)-Bridged Donor–Acceptor Dyads. Journal of Physical Chemistry C, 2020, 124, 9755-9764.	1.5	4
372	Two derivatives of phenylpyridyl-fused boroles with contrasting electronic properties: decreasing and enhancing the electron accepting ability. Dalton Transactions, 2021, 50, 355-361.	1.6	4
373	Mechanistic and Kinetic Factors of ortho â€Benzyne Formation in Hexadehydroâ€Dielsâ€Alder (HDDA) Reactions. Chemistry - A European Journal, 2021, 27, 7978-7991.	1.7	4
374	Triarylborane Dyes as a Novel Non-Covalent and Non-Inhibitive Fluorimetric Markers for DPP III Enzyme. Molecules, 2021, 26, 4816.	1.7	4
375	Reactions of (I- ⁵ -C ₉ H ₇)Rh(<fontface) 0.784314="" 1="" etqq1="" ij="" overl<br="" rg81="">molecular structure of [(Î-⁵-C₉H₇)Rh(2,3,5,6-C₆O₂(CH₃)</fontface)>	0.6	50 197 To 4 sub>)].
376	Canadian Journal of Chemistry, 1999, 77, 199-204. Iridium-Catalyzed Borylation of 6-Fluoroquinolines: Access to 6-Fluoroquinolones. Journal of Organic Chemistry, 0, , .	1.7	4
377	Novel boron quadrupolar NLO-phores: optimization of TPA/transparency trade-off via molecular engineering., 2005,,.		3
378	A new polymorph of dimesitylborinic acid. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2639-o2641.	0.2	3

#	Article	IF	CITATIONS
379	A novel self-promoted Morita-Baylis-Hillman-like dimerization. Science Bulletin, 2010, 55, 2794-2798.	1.7	3
380	Computational and theoretical approaches for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 464-488.	1.6	3
381	Isolated 2-hydroxypyrene and its dimer: a frequency- and time-resolved spectroscopic study. New Journal of Chemistry, 2021, 45, 14949-14956. Synthesis, structure, and solution dynamics of indenyl rhodium complexes containing bulky	1.4	3
382			

#	Article	IF	CITATIONS
397	fac-Dichlorotris(trimethylphosphine)(trimethylphosphoniomethyl)rhodium(III) chloride/bromide dichloromethane benzene solvate. Acta Crystallographica Section E: Structure Reports Online, 2006, 62, m574-m575.	0.2	0
398	Solid solution ofcis-1,2-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,2-bis[4-(trifluoromethyl)phenyl]ethene–cis-2-(1,3,2 solvate (1/1/1). Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o2367-o2369.	-b enz odio:	xaloorolan-2-y
399	Frontispiece: Triarylboraneâ€Based Helical Donor–Acceptor Compounds: Synthesis, Photophysical, and Electronic Properties. Chemistry - A European Journal, 2019, 25, .	1.7	0
400	Understanding unusual element-element bond formation and activation: general discussion. Faraday Discussions, 2019, 220, 376-385.	1.6	0
401	Physical methods for mechanistic understanding: general discussion. Faraday Discussions, 2019, 220, 144-178.	1.6	0
402	Frontispiece: An Iterative Divergent Approach to Conjugated Starburst Borane Dendrimers. Chemistry - A European Journal, 2020, 26, .	1.7	0
403	Frontispiece: Bis(phenylethynyl)arene Linkers in Tetracationic Bisâ€triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs. Chemistry - A European Journal, 2021, 27, .	1.7	0
404	Frontispiece: Synthetic Approaches to Triarylboranes from 1885 to 2020. Chemistry - A European Journal, 2021, 27, .	1.7	0
405	The Development of Small Molecules and Growth Supplements to Control the Differentiation of Stem Cells and the Formation of Neural Tissues. Pancreatic Islet Biology, 2011, , 499-513.	0.1	0
406	A Quadrupolar Bisâ€Triarylborane Chromophore as a Fluorimetric and Chirooptic Probe for Simultaneous and Selective Sensing of DNA, RNA and Proteins. Chemistry - A European Journal, 2020, 26, 2098-2098.	1.7	0