List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176317/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring the recovery of bioactive molecules from Moringa oleifera leaves: microwave treatment vs ultrasound treatment. Biomass Conversion and Biorefinery, 2024, 14, 1059-1071.	2.9	5
2	A green method for the extraction of Moringa oleifera leaves: evaluation of several in vitro assays for bioactive properties. Biomass Conversion and Biorefinery, 2024, 14, 6397-6405.	2.9	2
3	Recovery of bioactive ingredients from biowaste of olive tree (Olea europaea) using microwave-assisted extraction: a comparative study. Biomass Conversion and Biorefinery, 2023, 13, 2849-2861.	2.9	13
4	Valorization of Citrus unshiu biowastes to value-added products: an optimization of ultrasound-assisted extraction method using response surface methodology and particle swarm optimization. Biomass Conversion and Biorefinery, 2023, 13, 3719-3729.	2.9	14
5	Estimation of diffusion and mass transfer coefficients for the microwave-assisted extraction of bioactive substances from Moringa oleifera leaves. Biomass Conversion and Biorefinery, 2023, 13, 5125-5132.	2.9	7
6	A model study for decolorization reasons: β-carotene removal and its kinetics and thermodynamics behaviors. Biomass Conversion and Biorefinery, 2023, 13, 7755-7761.	2.9	5
7	Kinetics, thermodynamics, and mass transfer mechanism of the ultrasound-assisted extraction of bioactive molecules from Moringa oleifera leaves. Biomass Conversion and Biorefinery, 2023, 13, 7919-7926.	2.9	6
8	Automatic solvent extraction of sour cherry peels and storage stability of the products. Biomass Conversion and Biorefinery, 2022, 12, 5197-5207.	2.9	3
9	Computer modelling of the enrichment process of sunflower and corn oils with olive leaves through ultrasound treatment. Biomass Conversion and Biorefinery, 2022, 12, 5571-5581.	2.9	3
10	Effect of ionic strength on methylene blue sorption onto macroporous resins: a comprehensive study. Journal of Dispersion Science and Technology, 2022, 43, 716-725.	1.3	4
11	Sonication-assisted extraction of Hibiscus sabdariffa for the polyphenols recovery: application of a specially designed deep eutectic solvent. Biomass Conversion and Biorefinery, 2022, 12, 4959-4969.	2.9	21
12	Citric acid-based deep eutectic solvent for the anthocyanin recovery from Hibiscus sabdariffa through microwave-assisted extraction. Biomass Conversion and Biorefinery, 2022, 12, 351-360.	2.9	37
13	An advanced approach for the recovery of acetic acid from its aqueous media: deep eutectic liquids versus ionic liquids. Biomass Conversion and Biorefinery, 2022, 12, 341-349.	2.9	8
14	Menthol-based deep eutectic solvent for the separation of carbamazepine: reactive liquid-liquid extraction. Biomass Conversion and Biorefinery, 2022, 12, 1249-1256.	2.9	13
15	Hydrophobic carboxylic acid based deep eutectic solvent for the removal of diclofenac. Biomass Conversion and Biorefinery, 2022, 12, 2219-2227.	2.9	13
16	An eco-friendly and sustainable system for monitoring the oleuropein-rich extract from olive tree (Olea europaea) leaves. Biomass Conversion and Biorefinery, 2022, 12, 47-60.	2.9	9
17	One-pot green preparation of deep eutectic solvent-assisted ZnO/GO nanocomposite for cefixime trihydrate photocatalytic degradation under UV-A irradiation. Biomass Conversion and Biorefinery, 2022, 12, 73-86.	2.9	13
18	Valorization of peach (Prunus persica L.) waste into speciality products via green methods. Biomass Conversion and Biorefinery, 2022, 12, 123-132.	2.9	7

#	Article	IF	CITATIONS
19	Boron removal from aqueous solutions by chitosan/functionalized-SWCNT-COOH: Development of optimization study using response surface methodology and simulated annealing. Chemosphere, 2022, 288, 132554.	4.2	16
20	Photocatalytic degradation of cefixime in aqueous solutions using functionalized SWCNT/ZnO/Fe3O4 under UV-A irradiation. Chemosphere, 2022, 291, 132929.	4.2	29
21	Preparation of chromium fumarate metal-organic frameworks for removal of pharmaceutical compounds from water. Korean Journal of Chemical Engineering, 2022, 39, 638-645.	1.2	1
22	Highly clean recovery of natural antioxidants from lemon peels: Lactic acidâ€based automatic solvent extraction. Phytochemical Analysis, 2022, 33, 554-563.	1.2	4
23	Modeling of sunflower oil treated with lemon balm (<i>Melissa officinalis</i>): Artificial neural networks versus multiple linear regression. Journal of Food Processing and Preservation, 2022, 46, .	0.9	1
24	Encapsulation of olive leaf antioxidants in microbeads: Application of alginate and chitosan as wall materials. Sustainable Chemistry and Pharmacy, 2022, 27, 100707.	1.6	10
25	Adsorption of rutin from olive mill wastewater using copolymeric hydrogels based on N-vinylimidazole: Kinetic, equilibrium, and thermodynamics assessments. Environmental Research, 2022, 212, 113306.	3.7	6
26	A comparative study of lipid oxidation in garlic oil (<i>Allium sativum</i> L.): An accelerated oxidation. Journal of Food Processing and Preservation, 2022, 46, .	0.9	1
27	Recovery of anthocyanins from sour cherry <i>(Prunus cerasus L.)</i> peels via microwave assisted extraction: monitoring the storage stability. Preparative Biochemistry and Biotechnology, 2021, 51, 1-11.	1.0	12
28	Comparison of microwave-assisted techniques for the extraction of antioxidants from Citrus paradisi Macf. biowastes. Journal of Food Science and Technology, 2021, 58, 1190-1198.	1.4	15
29	Special designed deep eutectic solvents for the recovery of high added-value products from olive leaf: a sustainable environment for bioactive materials. Preparative Biochemistry and Biotechnology, 2021, 51, 422-429.	1.0	8
30	Enhanced extraction of high added-value products from Hibiscus sabdariffa using automatic solvent extractor: Kinetics and modeling. Sustainable Chemistry and Pharmacy, 2021, 19, 100356.	1.6	6
31	Recent advances in ion selectivity with capacitive deionization. Energy and Environmental Science, 2021, 14, 1095-1120.	15.6	226
32	Application of Dâ€optimal design for automatic solvent extraction of carotenoid from orange peel. Journal of Food Processing and Preservation, 2021, 45, e15724.	0.9	4
33	Mass transfer, kinetics, and thermodynamics studies during the extraction of polyphenols from Feijoa sellowiana peels. Journal of Food Processing and Preservation, 2021, 45, e15736.	0.9	3
34	A clean and green technology for oleuropein rich extract from Olea europaea by-product. Sustainable Chemistry and Pharmacy, 2021, 22, 100493.	1.6	4
35	Enrichment of Hazelnut Oil with Several Polyphenols: An Alternative Approach to A New Functional Food. Journal of Oleo Science, 2021, 70, 11-19.	0.6	2
36	Evaluation of the phenolic antioxidants of olive (<i>Olea europaea</i>) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. Chemical Engineering Communications, 2020, 207, 920-932.	1.5	6

#	Article	IF	CITATIONS
37	Evaluation of the weathering resistance of waterborne acrylic- and alkyd-based coatings containing HALS, UV absorber, and bark extracts on wood surfaces. Journal of Coatings Technology Research, 2020, 17, 461-475.	1.2	21
38	Carbamazepine sorption characteristics onto bentonite clay: Box-Behnken process design. Sustainable Chemistry and Pharmacy, 2020, 18, 100323.	1.6	7
39	A detailed study on the sorption characteristics of humic acid onto calcined dolomite. Journal of Molecular Structure, 2020, 1219, 128606.	1.8	8
40	Improving the quality of vegetable oils treated with phytochemicals: a comparative study. Journal of Food Science and Technology, 2020, 57, 3980-3987.	1.4	8
41	Highly efficient recovery of bioactive ingredients from solid waste of onions onto functionalized SWCNTs supported on amberlite nanocomposite. Iranian Polymer Journal (English Edition), 2020, 29, 607-614.	1.3	0
42	Special designed menthol-based deep eutectic liquid for the removal of herbicide 2,4-dichlorophenoxyacetic acid through reactive liquid–liquid extraction. Chemical Papers, 2020, 74, 3995-4002.	1.0	8
43	Investigation of graphene oxide as highly selective adsorbent in recovery of hydroxytyrosol from olive mill wastewater. International Journal of Environmental Science and Technology, 2020, 17, 4803-4814.	1.8	6
44	Acid-modulated zirconium based metal organic frameworks for removal of organic micropollutants. Journal of Environmental Chemical Engineering, 2020, 8, 103901.	3.3	11
45	Naproxen Adsorption onto Graphene Oxide Nanopowders: Equilibrium, Kinetic, and Thermodynamic Studies. Water, Air, and Soil Pollution, 2020, 231, 1.	1.1	17
46	Kinetics and thermodynamics evaluation of oxidative stability in Oleum hyperici: A comparative study. Journal of Pharmaceutical and Biomedical Analysis, 2020, 183, 113148.	1.4	4
47	Recovery of β-Carotene on Graphene Nanoplatelets UiO-66 Nanocomposites. Journal of Chemical & Engineering Data, 2020, 65, 821-827.	1.0	6
48	Removal of carbamazepine using UiO-66 and UiO-66/graphene nanoplatelet composite. Journal of Environmental Chemical Engineering, 2020, 8, 103898.	3.3	28
49	Harekât ve Neşriyat: Diyanet Gazetesi'nde 1974 Kıbrıs Barış Harekâtı Söylemi. Bilimname: [2020, 2020, 515-549.	Düşüı 0.3	nce Platform
50	Cleaner production of micronutrients from sesame seed pressed cake: a comparative study. Biomass Conversion and Biorefinery, 2019, 11, 1183.	2.9	2
51	Optimization of Bioactive Substances in the Wastes of Some Selective Mediterranean Crops. Beverages, 2019, 5, 42.	1.3	9
52	Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. Korean Journal of Chemical Engineering, 2019, 36, 1184-1192.	1.2	7
53	Recovery of polyphenols from water using Zr-based metal-organic frameworks and their nanocomposites with graphene nanoplatelets. Journal of Industrial and Engineering Chemistry, 2019, 78, 164-171.	2.9	12
54	Tailor-designed deep eutectic liquids as a sustainable extraction media: An alternative to ionic liquids. Journal of Pharmaceutical and Biomedical Analysis, 2019, 174, 324-329.	1.4	52

#	Article	IF	CITATIONS
55	Evaluation of oxidative stability in hazelnut oil treated with several antioxidants: Kinetics and thermodynamics studies. LWT - Food Science and Technology, 2019, 111, 478-483.	2.5	30
56	Recovery of hydroxytyrosol onto graphene oxide nanosheets: Equilibrium and kinetic models. Journal of Molecular Liquids, 2019, 285, 213-222.	2.3	11
57	Polyphenolic Antioxidants from Agri-Food Waste Biomass. Antioxidants, 2019, 8, 624.	2.2	20
58	Estimation of quality parameters in virgin olive oil treated with olive leaf extract: application of artificial neural networks. Chemical Papers, 2019, 73, 1189-1197.	1.0	9
59	A Green Valorisation Approach Using Microwaves and Supercritical CO2 for High-Added Value Ingredients from Mandarin (Citrus deliciosa Tenore) Leaf Waste. Waste and Biomass Valorization, 2019, 10, 533-546.	1.8	22
60	Evaluation of Stability against Oxidation in Edible Fats and Oils. Journal of Food Science and Nutrition Research, 2019, 02, .	0.1	4
61	Valorization of a biomass: phytochemicals in oilseed by-products. Phytochemistry Reviews, 2018, 17, 657-668.	3.1	27
62	Assessment of sesame (Sesamum indicum L.) cake as a source of high-added value substances: from waste to health. Phytochemistry Reviews, 2018, 17, 691-700.	3.1	33
63	Optimization of ultrasoundâ€assisted extraction of phenolic compounds from grapefruit (<i>Citrus) Tj ETQq1 1 (and quantitative variables. Journal of the Science of Food and Agriculture, 2018, 98, 4584-4596.</i>).784314 1.7	rgBT /Over 35
64	Fast and highly efficient removal of 2,4-D using amino-functionalized poly (glycidyl methacrylate) adsorbent: Optimization, equilibrium, kinetic and thermodynamic studies. Journal of Molecular Liquids, 2018, 260, 195-202.	2.3	24
65	Preparation of CeO 2 nanofibers derived from Ce-BTC metal-organic frameworks and its application on pesticide adsorption. Journal of Molecular Liquids, 2018, 255, 10-17.	2.3	42
66	Effect of drying method on oleuropein, total phenolic content, flavonoid content, and antioxidant activity of olive (<i>Olea europaea</i>) leaf. Journal of Food Processing and Preservation, 2018, 42, e13604.	0.9	65
67	Drying behaviour, effective diffusivity and energy of activation of olive leaves dried by microwave, vacuum and oven drying methods. Heat and Mass Transfer, 2018, 54, 1901-1911.	1.2	34
68	Pulsed ultrasound-assisted extraction of natural antioxidants from mandarin (<i>Citrus) Tj ETQq0 0 0 rgBT /Overl 2018, 205, 717-726.</i>	ock 10 Tf 1.5	50 227 Td (d 11
69	Olive tree (<scp><i>Olea europaea</i></scp> L.) leaf as a waste byâ€product of table olive and olive oil industry: a review. Journal of the Science of Food and Agriculture, 2018, 98, 1271-1279.	1.7	132
70	Oxidative stability of sesame oil extracted from the seeds with different origins: Kinetic and thermodynamic studies under accelerated conditions. Journal of Food Process Engineering, 2018, 41, e12878.	1.5	14
71	Optimizing the extraction of polyphenols from Sideritis montana L. using response surface methodology. Journal of Pharmaceutical and Biomedical Analysis, 2018, 158, 137-143.	1.4	22
72	Investigation of extractive interaction between ionic liquids and carbamazepine. Journal of Molecular Liquids, 2018, 268, 523-528.	2.3	6

#	Article	IF	CITATIONS
73	Assessment of lipid oxidation in cottonseed oil treated with phytonutrients: Kinetic and thermodynamic studies. Industrial Crops and Products, 2018, 124, 593-599.	2.5	31
74	Screening of the most consumed beverages and spices for their bioactive non-nutrient contents. Journal of Food Measurement and Characterization, 2018, 12, 2289-2301.	1.6	7
75	Comparison of different polymeric resins for naproxen removal from wastewater. Journal of Molecular Liquids, 2017, 241, 633-637.	2.3	17
76	Effect of olive leaf extract rich in oleuropein on the quality of virgin olive oil. Journal of Food Science and Technology, 2017, 54, 1721-1728.	1.4	26
77	Effects of natural antioxidants in the improvement of corn oil quality: olive leaf vs. lemon balm. International Journal of Food Science and Technology, 2017, 52, 374-380.	1.3	17
78	Selective adsorption of oleuropein from olive (<i>Olea europaea</i>) leaf extract using macroporous resin. Chemical Engineering Communications, 2017, 204, 1391-1400.	1.5	13
79	Highly efficient recovery of biophenols onto graphene oxide nanosheets: Valorisation of a biomass. Journal of Molecular Liquids, 2017, 246, 208-214.	2.3	17
80	Comparative study of modeling the stability improvement of sunflower oil with olive leaf extract. Korean Journal of Chemical Engineering, 2017, 34, 2284-2292.	1.2	14
81	Proximate Composition and Nutritional Value of Three Macroalgae: Ascophyllum nodosum, Fucus vesiculosus and Bifurcaria bifurcata. Marine Drugs, 2017, 15, 360.	2.2	129
82	Solvent-Free Microwave-Assisted Extraction of Polyphenols from Olive Tree Leaves: Antioxidant and Antimicrobial Properties. Molecules, 2017, 22, 1056.	1.7	166
83	Study on Optimum Extraction Conditions for Olive Leaf Extracts Rich in Polyphenol and Flavonoid. Separation Science and Technology, 2015, 50, 1181-1189.	1.3	27
84	A novel technology for extraction of phenolic antioxidants from mandarin (Citrus deliciosa Tenore) leaves: Solvent-free microwave extraction. Korean Journal of Chemical Engineering, 2015, 32, 950-957.	1.2	43
85	Isolation of naproxen from wastewater using carbon-based magnetic adsorbents. International Journal of Environmental Science and Technology, 2015, 12, 3541-3550.	1.8	42
86	Evaluation of 2,4-D removal via activated carbon from pomegranate husk/polymer composite hydrogel: Optimization of process parameters through face centered composite design. Korean Journal of Chemical Engineering, 2015, 32, 1879-1888.	1.2	15
87	The Effect of Protein Synthesis Game in the Class on the Students' Understanding of Protein Synthesis Subject. Procedia, Social and Behavioral Sciences, 2014, 116, 3075-3078.	0.5	4
88	A novel approach for olive leaf extraction through ultrasound technology : Response surface methodology versus artificial neural networks. Korean Journal of Chemical Engineering, 2014, 31, 1661-1667.	1.2	48
89	Optimisation of ultrasoundâ€assisted extraction of rosehip (<i>Rosa canina</i> L.) with response surface methodology. Journal of the Science of Food and Agriculture, 2013, 93, 2804-2809.	1.7	25

 $_{90}$ Effects of geographical origin and extraction methods on total phenolic yield of olive tree (Olea) Tj ETQq0 0 0 rgBT $_{2.7}^{10}$ Verlock 10 Tf 50 62

#	Article	IF	CITATIONS
91	Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrasonics Sonochemistry, 2013, 20, 595-602.	3.8	294
92	Investigation of Polyhenolic Content of Rose Hip (Rosa canina L.) Tea Extracts: A Comparative Study. Foods, 2013, 2, 43-52.	1.9	17
93	OBTAINING SCARLET SAGE (SALVIA COCCINEA) EXTRACT THROUGH HOMOGENIZER- AND ULTRASOUND-ASSISTED EXTRACTION METHODS. Chemical Engineering Communications, 2013, 200, 1197-1209.	1.5	22
94	Investigation of Oleuropein Content in Olive Leaf Extract Obtained by Supercritical Fluid Extraction and Soxhlet Methods. Separation Science and Technology, 2011, 46, 1829-1837.	1.3	55
95	Investigation of Formic Acid Separation from Aqueous Solution by Reactive Extraction: Effects of Extractant and Diluent. Journal of Chemical & Engineering Data, 2010, 55, 1519-1522.	1.0	55
96	Liquid Phase Equilibria for Mixtures of (Water + Morpholine + Ethyl Nonanoate, Dimethyl Phthalate,) Tj ETQqO 0 (D rgBT /Ov ₽.0	erlock 10 Tf :
97	Phase Equilibria for Liquid Mixtures of (an Alkane + Toluene + Dimethyl Phthalate). Journal of Chemical & Engineering Data, 2010, 55, 1204-1208.	1.0	0
98	(Liquid+liquid) equilibria of (water+lactic acid+alcohol) ternary systems. Journal of Chemical Thermodynamics, 2009, 41, 97-102.	1.0	27
99	Liquidâ^'Liquid Equilibria of (Limonene + Linalool + Ethylene Glycol or Diethylene Glycol or Triethylene) Tj ETQq1 1 737-741.	0.784314 1.0	4 rgBT /Overl 24
100	Liquidâ^'Liquid Equilibria of (Water + Acetic Acid + Diethyl Succinate or Diethyl Glutarate or Diethyl) Tj ETQq0 0 0	rgBT /Ove 1.0	rlggk 10 Tf 5
101	Liquidâ^'Liquid Equilibria for Ternary Systems of Water + Formic Acid + Dibasic Esters. Journal of Chemical & Engineering Data, 2007, 52, 1889-1893.	1.0	38
102	(Liquid+liquid) equilibria of (water+butyric acid+esters) ternary systems. Journal of Chemical Thermodynamics, 2007, 39, 1279-1285.	1.0	26
103	(Liquid+liquid) equilibria of (water+propionic acid+dibasic esters) ternary systems. Journal of Chemical Thermodynamics, 2007, 39, 1493-1499.	1.0	23
104	(Liquid+liquid) equilibria of (water+butyric acid+dibasic esters) ternary systems. Journal of Chemical Thermodynamics, 2007, 39, 284-290.	1.0	34
105	(Liquid+liquid) equilibria of (water+propionic acid+diethyl succinate or diethyl glutarate or diethyl) Tj ETQq1 1 0.7	784314 rg 1.0	BT ₄ Overlock
106	(Liquid+liquid) equilibria of (water+propionic acid+alcohol) ternary systems. Journal of Chemical Thermodynamics, 2006, 38, 1503-1509.	1.0	27
107	Determination of lipid oxidation in sunflower oil treated with several additives. Biomass Conversion and Biorefinery, 0, , 1.	2.9	0
108	Comparison of endotracheal tube cuff pressures inflated with saline or air in gynecological laparoscopic surgery. Marmara Medical Journal, 0, , .	0.2	0

#	Article	IF	CITATIONS
109	Calculation of effective diffusivity, mass transfer coefficient, kinetic, and thermodynamic parameters for the extraction process of bioactive materials from fig leaves. Biomass Conversion and Biorefinery, 0, , .	2.9	0
110	Microwave-assisted extraction of bioactive components from peach waste: describing the bioactivity degradation by polynomial regression. Biomass Conversion and Biorefinery, 0, , .	2.9	7