Jianjian Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176178/publications.pdf

Version: 2024-02-01

		201674	315739
37	3,545	27	38
papers	citations	h-index	g-index
39	39	39	5164
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Highly dispersed Pd nanoparticles confined in ZSM-5 zeolite crystals for selective hydrogenation of cinnamaldehyde. Microporous and Mesoporous Materials, 2022, 330, 111566.	4.4	9
2	Phosphoric acid-modified commercial kieselguhr supported palladium nanoparticles as efficient catalysts for low-temperature hydrodeoxygenation of lignin derivatives in water. Green Chemistry, 2022, 24, 1570-1577.	9.0	11
3	Promotion of sulfonic acid groups on biomass carbons loading ultrafine palladium nanoparticles for the efficient hydrodeoxygenation of vanillin in water. Current Research in Green and Sustainable Chemistry, 2022, 5, 100230.	5 . 6	5
4	Cryogenic Focused Ion Beam Enables Atomic-Resolution Imaging of Local Structures in Highly Sensitive Bulk Crystals and Devices. Journal of the American Chemical Society, 2022, 144, 3182-3191.	13.7	28
5	Tailoring interfacial microenvironment of palladiumâ€zeolite catalysts for the efficient lowâ€temperature hydrodeoxygenation of vanillin in water. ChemCatChem, 2022, 14, .	3.7	3
6	Significant Promotion of Carboxyl Groups in Palladium Nanoparticles-Supported Biomass Carbon Catalysts for Efficient Low-Temperature Hydrodeoxygenation of Lignin Derivatives in Water. ACS Sustainable Chemistry and Engineering, 2022, 10, 7277-7287.	6.7	8
7	Probing the Catalytic Active Sites of Mo/HZSM-5 and Their Deactivation during Methane Dehydroaromatization. Cell Reports Physical Science, 2021, 2, 100309.	5.6	17
8	Highly Active Heterogeneous Catalyst for Ethylene Dimerization Prepared by Selectively Doping Ni on the Surface of a Zeolitic Imidazolate Framework. Journal of the American Chemical Society, 2021, 143, 7144-7153.	13.7	42
9	In situ Generation of Molybdenum Carbide in Zeolite for Methane Dehydroaromatization. Kinetics and Catalysis, 2021, 62, S48-S59.	1.0	1
10	Methanol-to-Olefin Conversion over Small-Pore DDR Zeolites: Tuning the Propylene Selectivity via the Olefin-Based Catalytic Cycle. ACS Catalysis, 2020, 10, 3009-3017.	11.2	12
11	Investigating the Origin of Enhanced C ₂₊ Selectivity in Oxide-/Hydroxide-Derived Copper Electrodes during CO ₂ Electroreduction. Journal of the American Chemical Society, 2020, 142, 4213-4222.	13.7	236
12	Engineering effective structural defects of metal–organic frameworks to enhance their catalytic performances. Journal of Materials Chemistry A, 2020, 8, 4464-4472.	10.3	66
13	Direct Imaging of Tunable Crystal Surface Structures of MOF MIL-101 Using High-Resolution Electron Microscopy. Journal of the American Chemical Society, 2019, 141, 12021-12028.	13.7	93
14	Gate tunable giant anisotropic resistance in ultra-thin GaTe. Nature Communications, 2019, 10, 2302.	12.8	72
15	An Olefinâ€Linked Covalent Organic Framework as a Flexible Thinâ€Film Electrode for a Highâ€Performance Microâ€Supercapacitor. Angewandte Chemie - International Edition, 2019, 58, 12065-12069.	13.8	226
16	Imaging defects and their evolution in a metal–organic framework at sub-unit-cell resolution. Nature Chemistry, 2019, 11, 622-628.	13.6	371
17	Fine Tuning the Diffusion Length in Hierarchical ZSM-5 To Maximize the Yield of Propylene in Catalytic Cracking of Hydrocarbons. ACS Sustainable Chemistry and Engineering, 2018, 6, 15832-15840.	6.7	39
18	Converting Hierarchical to Bulk Structure: A Strategy for Encapsulating Metal Oxides and Noble Metals in Zeolites. Chemistry of Materials, 2018, 30, 6361-6369.	6.7	38

#	Article	IF	Citations
19	Highâ€Performance Largeâ€Scale Solar Steam Generation with Nanolayers of Reusable Biomimetic Nanoparticles. Advanced Sustainable Systems, 2017, 1, 1600013.	5. 3	145
20	Recent advances in heterogeneous catalytic conversion of glucose to 5-hydroxymethylfurfural via green routes. Science China Chemistry, 2017, 60, 870-886.	8.2	33
21	Recent progress in the direct synthesis of hierarchical zeolites: synthetic strategies and characterization methods. Materials Chemistry Frontiers, 2017, 1, 2195-2212.	5.9	45
22	Microporous cokes formed in zeolite catalysts enable efficient solar evaporation. Journal of Materials Chemistry A, 2017, 5, 6860-6865.	10.3	55
23	Preparation of N-doped activated carbons with high CO ₂ capture performance from microalgae (Chlorococcum sp.). RSC Advances, 2016, 6, 38724-38730.	3.6	21
24	One-pot catalytic conversion of microalgae (Chlorococcum sp.) into 5-hydroxymethylfurfural over the commercial H-ZSM-5 zeolite. Green Chemistry, 2016, 18, 452-460.	9.0	54
25	Efficient one-pot production of 1,2-propanediol and ethylene glycol from microalgae (Chlorococcum) Tj ETQq $1\ 1$	0.784314	rgBT /Over
26	Production of methyl levulinate from cellulose: selectivity and mechanism study. Green Chemistry, 2015, 17, 4037-4044.	9.0	99
27	Volumetric solar heating of nanofluids for direct vapor generation. Nano Energy, 2015, 17, 290-301.	16.0	350
28	Recent advances in the catalytic production of glucose from lignocellulosic biomass. Green Chemistry, 2015, 17, 737-751.	9.0	128
29	Direct conversion of biomass-derived carbohydrates to 5-hydroxymethylfurural over water-tolerant niobium-based catalysts. Fuel, 2015, 139, 301-307.	6.4	97
30	Catalytic production of isosorbide from cellulose over mesoporous niobium phosphate-based heterogeneous catalysts via a sequential process. Applied Catalysis A: General, 2014, 469, 108-115.	4.3	57
31	Efficient catalytic conversion of lignocellulosic biomass into renewable liquid biofuels via furan derivatives. RSC Advances, 2014, 4, 31101-31107.	3.6	63
32	High-yield production of levulinic acid from cellulose and its upgrading to \hat{I}^3 -valerolactone. Green Chemistry, 2014, 16, 3846.	9.0	149
33	Efficient production of the liquid fuel 2,5-dimethylfuran from 5-hydroxymethylfurfural over Ru/Co3O4 catalyst. Applied Catalysis B: Environmental, 2014, 146, 244-248.	20.2	229
34	High yield production and purification of 5â€hydroxymethylfurfural. AICHE Journal, 2013, 59, 2558-2566.	3.6	84
35	Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catalysis Science and Technology, 2012, 2, 2485.	4.1	177
36	Direct conversion of carbohydrates to 5-hydroxymethylfurfural using Sn-Mont catalyst. Green Chemistry, 2012, 14, 2506.	9.0	163

 #	Article	IF	CITATIONS
37	Efficient catalytic conversion of fructose into hydroxymethylfurfural by a novel carbon-based solid acid. Green Chemistry, 2011, 13, 2678.	9.0	287