List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176159/publications.pdf Version: 2024-02-01



Μανκμανιά

| #  | Article                                                                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Suppression of inflammatory and neuropathic pain by uncoupling CRMP-2 from the presynaptic Ca2+ channel complex. Nature Medicine, 2011, 17, 822-829.                                                                                                               | 15.2 | 200       |
| 2  | Molecular chaperone Hsp90 stabilizes Pih1/Nop17 to maintain R2TP complex activity that regulates snoRNA accumulation. Journal of Cell Biology, 2008, 180, 563-578.                                                                                                 | 2.3  | 159       |
| 3  | Discovery and characterization of small molecules that target the GTPase Ral. Nature, 2014, 515, 443-447.                                                                                                                                                          | 13.7 | 126       |
| 4  | Hierarchical CRMP2 posttranslational modifications control NaV1.7 function. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E8443-E8452.                                                                               | 3.3  | 103       |
| 5  | Structural Insights Into TDP-43 and Effects of Post-translational Modifications. Frontiers in Molecular Neuroscience, 2019, 12, 301.                                                                                                                               | 1.4  | 86        |
| 6  | Unique structural and stabilizing roles for the individual pseudouridine residues in the 1920 region of Escherichia coli 23S rRNA. Nucleic Acids Research, 2000, 28, 2075-2083.                                                                                    | 6.5  | 83        |
| 7  | A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses inflammatory and postoperative pain behaviors. Pain, 2015, 156, 1247-1264.                                                                                     | 2.0  | 71        |
| 8  | CRISPR/Cas9 editing of Nf1 gene identifies CRMP2 as a therapeutic target in neurofibromatosis type<br>1-related pain that is reversed by (S)-Lacosamide. Pain, 2017, 158, 2301-2319.                                                                               | 2.0  | 67        |
| 9  | Discovery of a Novel Class of Covalent Inhibitor for Aldehyde Dehydrogenases. Journal of Biological<br>Chemistry, 2011, 286, 43486-43494.                                                                                                                          | 1.6  | 65        |
| 10 | Target-Specific Support Vector Machine Scoring in Structure-Based Virtual Screening: Computational<br>Validation, In Vitro Testing in Kinases, and Effects on Lung Cancer Cell Proliferation. Journal of<br>Chemical Information and Modeling, 2011, 51, 755-759.  | 2.5  | 59        |
| 11 | (S)-lacosamide inhibition of CRMP2 phosphorylation reduces postoperative and neuropathic pain<br>behaviors through distinct classes of sensory neurons identified by constellation pharmacology.<br>Pain, 2016, 157, 1448-1463.                                    | 2.0  | 54        |
| 12 | (S)-Lacosamide Binding to Collapsin Response Mediator Protein 2 (CRMP2) Regulates CaV2.2 Activity by<br>Subverting Its Phosphorylation by Cdk5. Molecular Neurobiology, 2016, 53, 1959-1976.                                                                       | 1.9  | 50        |
| 13 | Inhibition of the Ubc9 E2 SUMO-conjugating enzyme–CRMP2 interaction decreases NaV1.7 currents and reverses experimental neuropathic pain. Pain, 2018, 159, 2115-2127.                                                                                              | 2.0  | 49        |
| 14 | Targeting Multiple Conformations Leads to Small Molecule Inhibitors of the uPARÂ∙uPA<br>Protein–Protein Interaction That Block Cancer Cell Invasion. ACS Chemical Biology, 2011, 6, 1232-1243.                                                                     | 1.6  | 48        |
| 15 | CRMP-2 Peptide Mediated Decrease of High and Low Voltage-Activated Calcium Channels, Attenuation<br>of Nociceptor Excitability, and Anti-Nociception in a Model of AIDS Therapy-Induced Painful Peripheral<br>Neuropathy. Molecular Pain, 2012, 8, 1744-8069-8-54. | 1.0  | 48        |
| 16 | Blocking CRMP2 SUMOylation reverses neuropathic pain. Molecular Psychiatry, 2018, 23, 2119-2121.                                                                                                                                                                   | 4.1  | 47        |
| 17 | Small Molecule Targeting TDP-43's RNA Recognition Motifs Reduces Locomotor Defects in a<br><i>Drosophila</i> Model of Amyotrophic Lateral Sclerosis (ALS). ACS Chemical Biology, 2019, 14,<br>2006-2013.                                                           | 1.6  | 45        |
| 18 | Betulinic acid, derived from the desert lavender Hyptis emoryi, attenuates paclitaxel-, HIV-, and nerve<br>injury–associated peripheral sensory neuropathy via block of N- and T-type calcium channels. Pain,<br>2019, 160, 117-135.                               | 2.0  | 44        |

| #  | Article                                                                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Small-molecule inhibition of the uPAR·uPA interaction: Synthesis, biochemical, cellular, in vivo pharmacokinetics and efficacy studies in breast cancer metastasis. Bioorganic and Medicinal Chemistry, 2013, 21, 2145-2155.           | 1.4 | 43        |
| 20 | Further insights into the antinociceptive potential of a peptide disrupting the N-type calcium channel–CRMP-2 signaling complex. Channels, 2011, 5, 449-456.                                                                           | 1.5 | 40        |
| 21 | Homologyâ€guided mutational analysis reveals the functional requirements for antinociceptive<br>specificity of collapsin response mediator protein 2â€derived peptides. British Journal of Pharmacology,<br>2018, 175, 2244-2260.      | 2.7 | 40        |
| 22 | The functionalized amino acid (S)-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth. Frontiers in Cellular Neuroscience, 2014, 8, 196.            | 1.8 | 38        |
| 23 | Differential neuroprotective potential of CRMP2 peptide aptamers conjugated to cationic,<br>hydrophobic, and amphipathic cell penetrating peptides. Frontiers in Cellular Neuroscience, 2015, 8,<br>471.                               | 1.8 | 37        |
| 24 | A peptide uncoupling CRMP-2 from the presynaptic Ca2+ channel complex demonstrates efficacy in<br>animal models of migraine and AIDS therapy-induced neuropathy. Translational Neuroscience, 2012, 3,<br>1-8.                          | 0.7 | 36        |
| 25 | Targeting Ovarian Tumor Cell Adhesion Mediated by Tissue Transglutaminase. Molecular Cancer<br>Therapeutics, 2011, 10, 626-636.                                                                                                        | 1.9 | 35        |
| 26 | Thermodynamics of RNA hairpins containing single internal mismatches. Nucleic Acids Research, 1999, 27, 1118-1125.                                                                                                                     | 6.5 | 34        |
| 27 | Structural study of the H/ACA snoRNP components Nop10p and the 3' hairpin of U65 snoRNA. Rna, 2006, 12, 40-52.                                                                                                                         | 1.6 | 34        |
| 28 | A systematic characterization of Cwc21, the yeast ortholog of the human spliceosomal protein SRm300. Rna, 2009, 15, 2174-2185.                                                                                                         | 1.6 | 34        |
| 29 | Design, synthesis, biochemical studies, cellular characterization, and structure-based computational studies of small molecules targeting the urokinase receptor. Bioorganic and Medicinal Chemistry, 2012, 20, 4760-4773.             | 1.4 | 34        |
| 30 | A single structurally conserved SUMOylation site in CRMP2 controls NaV1.7 function. Channels, 2017, 11, 316-328.                                                                                                                       | 1.5 | 34        |
| 31 | Discovery of novel regulators of aldehyde dehydrogenase isoenzymes. Chemico-Biological<br>Interactions, 2011, 191, 153-158.                                                                                                            | 1.7 | 33        |
| 32 | Virtual Screening Targeting the Urokinase Receptor, Biochemical and Cell-Based Studies, Synthesis,<br>Pharmacokinetic Characterization, and Effect on Breast Tumor Metastasis. Journal of Medicinal<br>Chemistry, 2011, 54, 7193-7205. | 2.9 | 32        |
| 33 | Sustained relief of ongoing experimental neuropathic pain by a CRMP2 peptide aptamer with low abuse potential. Pain, 2016, 157, 2124-2140.                                                                                             | 2.0 | 30        |
| 34 | Targeting the CaVα–CaVβ interaction yields an antagonist of the N-type CaV2.2 channel with broad antinociceptive efficacy. Pain, 2019, 160, 1644-1661.                                                                                 | 2.0 | 30        |
| 35 | Structural basis for 2′-phosphate incorporation into glycogen by glycogen synthase. Proceedings of the United States of America, 2013, 110, 20976-20981.                                                                               | 3.3 | 29        |
| 36 | Discovery and Characterization of 2,5-Substituted Benzoic Acid Dual Inhibitors of the Anti-apoptotic Mcl-1 and Bfl-1 Proteins. Journal of Medicinal Chemistry, 2020, 63, 2489-2510.                                                    | 2.9 | 23        |

| #  | Article                                                                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Selective targeting of NaV1.7 via inhibition of the CRMP2-Ubc9 interaction reduces pain in rodents.<br>Science Translational Medicine, 2021, 13, eabh1314.                                        | 5.8 | 23        |
| 38 | (â^')-Hardwickiic Acid and Hautriwaic Acid Induce Antinociception via Blockade of<br>Tetrodotoxin-Sensitive Voltage-Dependent Sodium Channels. ACS Chemical Neuroscience, 2019, 10,<br>1716-1728. | 1.7 | 22        |
| 39 | Mapping CRMP3 domains involved in dendrite morphogenesis and voltage-gated calcium channel regulation. Journal of Cell Science, 2013, 126, 4262-73.                                               | 1.2 | 21        |
| 40 | The Natural Flavonoid Naringenin Elicits Analgesia through Inhibition of NaV1.8 Voltage-Gated Sodium<br>Channels. ACS Chemical Neuroscience, 2019, 10, 4834-4846.                                 | 1.7 | 20        |
| 41 | Relative Inhibitory Potency of Molinate and Metabolites with Aldehyde Dehydrogenase 2: Implications for the Mechanism of Enzyme Inhibition. Chemical Research in Toxicology, 2010, 23, 1843-1850. | 1.7 | 19        |
| 42 | An Allosteric Modulator of RNA Binding Targeting the N-Terminal Domain of TDP-43 Yields<br>Neuroprotective Properties. ACS Chemical Biology, 2020, 15, 2854-2859.                                 | 1.6 | 19        |
| 43 | Docking to Erlotinib Off-Targets Leads to Inhibitors of Lung Cancer Cell Proliferation with Suitable in Vitro Pharmacokinetics. ACS Medicinal Chemistry Letters, 2010, 1, 229-233.                | 1.3 | 18        |
| 44 | Chemical shift perturbation mapping of the Ubc9-CRMP2 interface identifies a pocket in CRMP2 amenable for allosteric modulation of Nav1.7 channels. Channels, 2018, 12, 219-227.                  | 1,5 | 17        |
| 45 | Animal Models of Neurodegenerative Disease: Recent Advances in Fly Highlight Innovative Approaches<br>to Drug Discovery. Frontiers in Molecular Neuroscience, 2022, 15, 883358.                   | 1.4 | 17        |
| 46 | A novel variant in <i>TAF1</i> affects gene expression and is associated with X-linked <i>TAF1</i> intellectual disability syndrome. Neuronal Signaling, 2018, 2, NS20180141.                     | 1.7 | 16        |
| 47 | Synthesis of a 3-methyluridine phosphoramidite to investigate the role of methylation in a ribosomal RNA hairpin. Bioorganic and Medicinal Chemistry, 2002, 10, 325-332.                          | 1.4 | 13        |
| 48 | Reactions of platinum(II) complexes with a DNA hairpin, d(CGCGTTGTTCGCG): structural characterization and kinetic studies. Inorganica Chimica Acta, 2000, 297, 145-155.                           | 1.2 | 12        |
| 49 | Expression and purification of functional human glycogen synthase-1 (hGYS1) in insect cells. Protein<br>Expression and Purification, 2013, 90, 78-83.                                             | 0.6 | 12        |
| 50 | Heat shock protein Grp78/BiP/HspA5 binds directly to TDP-43 and mitigates toxicity associated with disease pathology. Scientific Reports, 2022, 12, 8140.                                         | 1.6 | 12        |
| 51 | Antihypertensive drug treatment and susceptibility to SARS-CoV-2 infection in human PSC-derived cardiomyocytes and primary endothelial cells. Stem Cell Reports, 2021, 16, 2459-2472.             | 2.3 | 11        |
| 52 | <i>In Silico</i> Targeting of the Long Noncoding RNA MALAT1. ACS Medicinal Chemistry Letters, 2021, 12, 915-921.                                                                                  | 1.3 | 10        |
| 53 | A Chemical Biology Approach to Model Pontocerebellar Hypoplasia Type 1B (PCH1B). ACS Chemical Biology, 2018, 13, 3000-3010.                                                                       | 1.6 | 9         |
| 54 | Photoinduced cleavage by a rhodium complex at G·U mismatches and exposed guanines in large and small RNAs. Biochimie, 2002, 84, 859-868.                                                          | 1.3 | 7         |

| #  | Article                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | RNA in control. Nature, 2007, 447, 391-393.                                                                                                                              | 13.7 | 7         |
| 56 | Direct targeting of TDP-43, from small molecules to biologics: the therapeutic landscape. RSC Chemical Biology, 2021, 2, 1158-1166.                                      | 2.0  | 6         |
| 57 | The principles of tomorrow's university. F1000Research, 2018, 7, 1926.                                                                                                   | 0.8  | 6         |
| 58 | 1H, 15N and 13C backbone assignment of apo TDP-43 RNA recognition motifs. Biomolecular NMR<br>Assignments, 2019, 13, 163-167.                                            | 0.4  | 3         |
| 59 | Aptamers Targeting Hallmark Proteins of Neurodegeneration. Nucleic Acid Therapeutics, 2022, 32, 235-250.                                                                 | 2.0  | 3         |
| 60 | Evaluation of edonerpic maleate as a CRMP2 inhibitor for pain relief. Channels, 2019, 13, 498-504.                                                                       | 1.5  | 2         |
| 61 | NMR Studies of Protein–RNA Interactions. Methods in Molecular Biology, 2012, 831, 197-218.                                                                               | 0.4  | 2         |
| 62 | (399) A membrane-delimited N-myristoylated CRMP2 peptide aptamer inhibits CaV2.2 trafficking and reverses post-operative pain behaviors. Journal of Pain, 2015, 16, S75. | 0.7  | 0         |
| 63 | Remodeling the interactions between TDP43 and RNA for development of therapeutics for ALS. FASEB<br>Journal, 2019, 33, 670.1.                                            | 0.2  | 0         |
| 64 | Abstract LB-226: Discovery of small molecule Mcl-1 and Bfl-1 inhibitors. , 2020, , .                                                                                     |      | 0         |
| 65 | Modeling of Pontocerebellar Hypoplasia Type 1B and Chemical Mimicry in Patient-Derived Neural Stem Cells. SSRN Electronic Journal, 0, , .                                | 0.4  | 0         |
| 66 | Chemical Probes to Control RNA Function. Chemical Biology, 2020, , 214-246.                                                                                              | 0.1  | 0         |
| 67 | Small Molecules Targeting RIPK3/MLKL Interactions Disrupt Necroptosis. SSRN Electronic Journal, 0, , .                                                                   | 0.4  | 0         |