Christos Markos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Optics Express, 2016, 24, 1206.	1.7	210
2	Hybrid photonic-crystal fiber. Reviews of Modern Physics, 2017, 89, .	16.4	200
3	High-T_g TOPAS microstructured polymer optical fiber for fiber Bragg grating strain sensing at 110 degrees. Optics Express, 2013, 21, 4758.	1.7	187
4	Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Optical Materials Express, 2017, 7, 286.	1.6	137
5	Fabrication and characterization of polycarbonate microstructured polymer optical fibers for high-temperature-resistant fiber Bragg grating strain sensors. Optical Materials Express, 2016, 6, 649.	1.6	118
6	Label-free biosensing with high sensitivity in dual-core microstructured polymer optical fibers. Optics Express, 2011, 19, 7790.	1.7	117
7	Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors. Optics Express, 2016, 24, 1253.	1.7	117
8	Single-mode, low loss hollow-core anti-resonant fiber designs. Optics Express, 2019, 27, 3824.	1.7	117
9	Low Loss Polycarbonate Polymer Optical Fiber for High Temperature FBG Humidity Sensing. IEEE Photonics Technology Letters, 2017, 29, 575-578.	1.3	100
10	Increased mid-infrared supercontinuum bandwidth and average power by tapering large-mode-area chalcogenide photonic crystal fibers. Optics Express, 2017, 25, 15336.	1.7	86
11	A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission. IEEE Photonics Technology Letters, 2016, 28, 1537-1540.	1.3	78
12	Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber. Scientific Reports, 2019, 9, 4446.	1.6	78
13	Zeonex-PMMA microstructured polymer optical FBGs for simultaneous humidity and temperature sensing. Optics Letters, 2017, 42, 1161.	1.7	78
14	Bending loss and thermo-optic effect of a hybrid PDMS/silica photonic crystal fiber. Optics Express, 2010, 18, 24344.	1.7	77
15	Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes. Optics Express, 2014, 22, 5270.	1.7	76
16	Narrow Bandwidth 850-nm Fiber Bragg Gratings in Few-Mode Polymer Optical Fibers. IEEE Photonics Technology Letters, 2011, 23, 660-662.	1.3	74
17	Hybrid polymer photonic crystal fiber with integrated chalcogenide glass nanofilms. Scientific Reports, 2014, 4, 6057.	1.6	58
18	Direct nanoimprinting of moth-eye structures in chalcogenide glass for broadband antireflection in the mid-infrared. Optica, 2018, 5, 557.	4.8	58

#	Article	IF	CITATIONS
19	Chalcogenide glass layers in silica photonic crystal fibers. Optics Express, 2012, 20, 14814.	1.7	46
20	Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers. Optics Letters, 2017, 42, 2232.	1.7	45
21	High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region. Biomedical Optics Express, 2018, 9, 1762.	1.5	45
22	All-fibre supercontinuum laser for in vivo multispectral photoacoustic microscopy of lipids in the extended near-infrared region. Photoacoustics, 2020, 18, 100163.	4.4	45
23	Hollow-core fiber with nested anti-resonant tubes for low-loss THz guidance. Optics Communications, 2018, 426, 477-482.	1.0	39
24	Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers. Optics Express, 2021, 29, 3359.	1.7	39
25	Guiding and thermal properties of a hybrid polymer-infused photonic crystal fiber. Optical Materials Express, 2012, 2, 929.	1.6	36
26	Enhanced birefringence in conventional and hybrid anti-resonant hollow-core fibers. Optics Express, 2021, 29, 12516.	1.7	32
27	Broadband Guidance in a Hollow-Core Photonic Crystal Fiber With Polymer-Filled Cladding. IEEE Photonics Technology Letters, 2013, 25, 2003-2006.	1.3	31
28	Flat fibre and femtosecond laser technology as a novel photonic integration platform for optofluidic based biosensing devices and lab-on-chip applications: Current results and future perspectives. Sensors and Actuators B: Chemical, 2015, 209, 1030-1040.	4.0	31
29	Nonlinear Label-Free Biosensing With High Sensitivity Using As ₂ S ₃ Chalcogenide Tapered Fiber. Journal of Lightwave Technology, 2015, 33, 2892-2898.	2.7	31
30	Multispectral photoacoustic sensing for accurate glucose monitoring using a supercontinuum laser. Journal of the Optical Society of America B: Optical Physics, 2019, 36, A61.	0.9	31
31	High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO ₂ absorption at 4.2  µm. Optics Letters, 2020, 45, 1938.	1.7	29
32	Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses. Scientific Reports, 2020, 10, 4912.	1.6	28
33	Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Optical Materials Express, 2019, 9, 2617.	1.6	24
34	Determining the refractive index dispersion and thickness of hot-pressed chalcogenide thin films from an improved Swanepoel method. Optical and Quantum Electronics, 2017, 49, 1.	1.5	23
35	Poor-man's model of hollow-core anti-resonant fibers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 69.	0.9	21
36	Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers. Optics Express, 2018, 26, 24357.	1.7	20

#	Article	IF	CITATIONS
37	Thermo-tunable hybrid photonic crystal fiber based on solution-processed chalcogenide glass nanolayers. Scientific Reports, 2016, 6, 31711.	1.6	19
38	Near-infrared nanospectroscopy using a low-noise supercontinuum source. APL Photonics, 2021, 6, .	3.0	18
39	All-polymer multimaterial optical fiber fabrication for high temperature applications. Optical Materials Express, 2021, 11, 345.	1.6	18
40	Low-loss micro-machining of anti-resonant hollow-core fiber with focused ion beam for optofluidic application. Optical Materials Express, 2021, 11, 338.	1.6	15
41	Adaptive polymer fiber neural device for drug delivery and enlarged illumination angle for neuromodulation. Journal of Neural Engineering, 2022, 19, 016035.	1.8	14
42	Single Peak Fiber Bragg Grating Sensors in Tapered Multimode Polymer Optical Fibers. Journal of Lightwave Technology, 2021, 39, 6934-6941.	2.7	13
43	Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53  µm to 2.4  µm Letters, 2021, 46, 452.	. Optics 1.7	13
44	Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors. Sensors, 2017, 17, 568.	2.1	12
45	Multispecies Continuous Gas Detection With Supercontinuum Laser at Telecommunication Wavelength. IEEE Sensors Journal, 2020, 20, 10591-10597.	2.4	12
46	Mid-infrared photoacoustic gas monitoring driven by a gas-filled hollow-core fiber laser. Scientific Reports, 2021, 11, 3512.	1.6	12
47	Thermally tunable dispersion modulation in a chalcogenide-based hybrid optical fiber. Optics Letters, 2021, 46, 2533.	1.7	12
48	Low-noise tunable deep-ultraviolet supercontinuum laser. Scientific Reports, 2020, 10, 18447.	1.6	10
49	CO ₂ -based hollow-core fiber Raman laser with high-pulse energy at 1.95  µm. Optics Letter 2021, 46, 5133.	rs, 1.7	10
50	Noise Performance and Long-Term Stability of Near- and Mid-IR Gas-Filled Fiber Raman Lasers. Journal of Lightwave Technology, 2021, 39, 3560-3567.	2.7	9
51	Non-Destructive Subsurface Inspection of Marine and Protective Coatings Using Near- and Mid-Infrared Optical Coherence Tomography. Coatings, 2021, 11, 877.	1.2	9
52	Guiding and birefringent properties of a hybrid PDMS/silica photonic crystal fiber. , 2011, , .		8
53	Extreme UV Light Generation Through Dispersive Wave Trapping in a Tapered Gas-Filled Hollow Fiber. IEEE Photonics Technology Letters, 2019, 31, 795-798.	1.3	8
54	Photo-induced changes in a hybrid amorphous chalcogenide/silica photonic crystal fiber. Applied Physics Letters, 2014, 104, 011114.	1.5	7

#	Article	IF	CITATIONS
55	Mapping the structure. Nature Photonics, 2015, 9, 9-11.	15.6	7
56	Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber. Applied Optics, 2019, 58, D7.	0.9	7
57	Highly Birefringent, Low-Loss, and Near-Zero Flat Dispersion ENZ Based THz Photonic Crystal Fibers. IEEE Photonics Journal, 2020, 12, 1-9.	1.0	6
58	Multimaterial photonic crystal fibers. , 2018, , .		6
59	Reconfigurable opto-thermal graded-index waveguiding in bulk chalcogenide glasses. Optics Letters, 2017, 42, 1919.	1.7	5
60	Supercontinuum generation from deep-UV to mid-IR in a noble gas-filled fiber pumped with ultrashort mid-IR pulses. , 2018, , .		5
61	Assessment of fiber optic sensors for aging monitoring of industrial liquid coolants. Proceedings of SPIE, 2015, , .	0.8	4
62	Antiresonant guiding in a poly(methyl-methacrylate) hollow-core optical fiber. Journal of Optics (United Kingdom), 2015, 17, 105603.	1.0	3
63	M-type fiber for exploiting higher-order-modes dispersion for application in mid-IR supercontinuum generation. , 2016, , .		3
64	Microstructured Polymer Optical Fiber Gratings and Sensors. , 2019, , 2037-2078.		3
65	Thermo-optic effect of an index guiding photonic crystal fiber with elastomer inclusions. , 2011, , .		2
66	Characterising refractive index dispersion in chalcogenide glasses. , 2016, , .		2
67	Integrated Ammonia Sensor Using a Telecom Photonic Integrated Circuit and a Hollow Core Fiber. Photonics, 2020, 7, 93.	0.9	2
68	Zeonex Microstructured Polymer Optical Fibre Bragg Grating Sensor. , 2016, , .		2
69	Microstructured Polymer Optical Fiber Gratings and Sensors. , 2018, , 1-43.		2
70	Single mode, Low-loss 5-tube Nested Hollow-core Anti-resonant Fiber. , 2019, , .		2
71	Femtosecond laser inscription and micromachining in novel flexible glass flat-fibre chips. Proceedings of SPIE, 2013, , .	0.8	1
72	Flexible glass flat-fibre chips and femtosecond laser inscription as enabling technologies for photonic devices. , 2014, , .		1

.

#	Article	IF	CITATIONS
73	PMMA mPOF Bragg gratings written in less than 10 min. Proceedings of SPIE, 2014, , .	0.8	1
74	Thermally tunable bandgaps in a hybrid As2S3/silica photonic crystal fiber. , 2015, , .		1
75	Nonlinear Kerr effect in a hybrid polymer/chalcogenide photonic crystal fiber. , 2015, , .		1
76	Simultaneous measurement of temperature and humidity with microstructured polymer optical fiber Bragg gratings. , 2017, , .		1
77	Towards an all-fiber system for detection and monitoring of ammonia. , 2019, , .		1
78	Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers. , 2017, , .		1
79	Supercontinuum Laser for Spectroscopic Photoacoustic Imaging of Lipids in the Extended Near-Infrared Region. , 2018, , .		1
80	Noble and Raman-active Gas-Filled Hollow-Core Fiber Lasers. , 2020, , .		1
81	Applications of mid-infrared supercontinuum lasers and examples within optical coherence tomography for non-destructive testing (Conference Presentation). , 2020, , .		1
82	Two octaves spanning photoacoustic microscopy. Scientific Reports, 2022, 12, .	1.6	1
83	Partial power recovery of bend-induced loss using a hybrid index-guiding photonic crystal fiber. , 2011, , ,		0
84	Formation of PDMS films inside the holes of silica photonic crystal fibers. Proceedings of SPIE, 2012, , .	0.8	0
85	Temperature compensated, humidity insensitive, high-T _g TOPAS FBGs for accelerometers and microphones. , 2012, , .		0
86	Modeling of photonic crystal fiber with polymer inclusions. Proceedings of SPIE, 2012, , .	0.8	0
87	Proteins detection by polymer optical fibers sensitised with overlayers of block and random copolymers. Proceedings of SPIE, 2014, , .	0.8	0
88	Development of hybrid solid and hollow core photonic crystal fiber with soft glass deposition for infrared light manipulation. , 2014, , .		0
89	Humidity insensitive step-index polymer optical fibre Bragg grating sensors. , 2015, , .		0
90	Creation of a microstructured polymer optical fiber with UV Bragg grating inscription for the detection of extensions at temperatures up to 125°C. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
91	Toward single-mode UV to near-IR guidance using hollow-core anti-resonant silica fiber. , 2017, , .		Ο
92	Curvature and position of nested tubes in hollow-core anti-resonant fibers. , 2017, , .		0
93	Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers: publisher's note. Optics Letters, 2017, 42, 2943.	1.7	0
94	Multiple soliton compression stages in mid-IR gas-filled hollow-core fibers. , 2017, , .		0
95	Generation of multiple VUV dispersive waves using a tapered gas-filled hollow-core anti-resonant fiber. , 2017, , .		Ο
96	Frequency comb-like high energy gas-filled fiber Raman laser spanning from 1.68 μm to 2.4 μm. , 2021, , .		0
97	Optical Fibers: Materials and Applications. Optical Materials Express, 2021, 11, 1364.	1.6	Ο
98	Optical Fibers: Materials and Applications. Optical Materials Express, 2021, 11, 1364.	1.6	0
99	Mid-IR gas-filled hollow-core fiber lasers based on Raman gases. , 2021, , .		Ο
100	Stability performance of active gas-filled hollow-core antiresonant fiber lasers. , 2021, , .		0
101	Modulation-instability biosensing using an As2S3 chalcogenide tapered fiber. , 2016, , .		Ο
102	Visible to Mid-infrared Supercontinuum Generation Using a Gas-filled Hollow-core Fiber. , 2018, , .		0
103	Extending the UV Supercontinuum by Tapering Gas-Filled Hollow-Core Anti-Resonant Fibers. , 2018, , .		Ο
104	High Pulse Energy Supercontinuum Laser for Photoacoustic Detection and Identification of Lipids in the 1650–1850 nm Wavelength Region. , 2018, , .		0
105	Optical ammonia sensors based on Hollow core fiber and photoacoustic spectroscopy. , 2019, , .		Ο
106	Monitoring of ammonia in an aqueous environment using a supercontinuum-based photoacoustic sensing system. , 2019, , .		0
107	Towards accurate and label-free monitoring of bio-analytes using supercontinuum based multispectral photoacoustic spectroscopy in the extended near-infrared wavelength regime. , 2019, , .		0
108	Noise Effect and Stability of Deep-UV Gas-filled Fiber Lasers Pumped with Ultrafast Mid-IR Pulses. , 2020, , .		0

#	Article	IF	CITATIONS
109	High-pulse energy supercontinuum sources for multi-spectral photoacoustic imaging in the near-infrared wavelength region (Conference Presentation). , 2020, , .		0
110	High-temperature polymer multimaterial fibers. , 2021, , .		0
111	Novel Soft Optrodes for Infrared Neuromodulation. , 2022, , .		0