

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7176013/publications.pdf Version: 2024-02-01

OIN HU

#	Article	IF	CITATIONS
1	Gadolinium-doped carbon dots as a ratiometric fluorometry and colorimetry dual-mode nano-sensor based on specific chelation for morin detection. Sensors and Actuators B: Chemical, 2022, 352, 130991.	7.8	28
2	Comparision of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei. Microbial Pathogenesis, 2022, 162, 105375.	2.9	6
3	Intelligently design primary aromatic amines derived carbon dots for optical dual-mode and smartphone imaging detection of nitrite based on specific diazo coupling. Journal of Hazardous Materials, 2022, 430, 128393.	12.4	38
4	Isolation and Characterization of a Lytic Vibriophage OY1 and Its Biocontrol Effects Against Vibrio spp Frontiers in Microbiology, 2022, 13, 830692.	3.5	5
5	Physiological properties, survivability and genomic characteristics of <i>Pediococcus pentosaceus</i> for application as a starter culture. International Journal of Dairy Technology, 2022, 75, 588-602.	2.8	2
6	Nitrogen-doped carbon dots coupled with morin-Al3+: Cleverly design an integrated sensing platform for ratiometric optical dual-mode and smartphone-assisted visual detection of fluoride ion. Journal of Hazardous Materials, 2022, 439, 129596.	12.4	25
7	Development of a highly sensitive fluorescence method for tartrazine determination in food matrices based on carbon dots. Analytical and Bioanalytical Chemistry, 2021, 413, 1485-1492.	3.7	13
8	Nitrogen, sulfur, phosphorus, and chlorine co-doped carbon nanodots as an "off-on―fluorescent probe for sequential detection of curcumin and europium ion and luxuriant applications. Mikrochimica Acta, 2021, 188, 16.	5.0	16
9	Isolation and genomic characterization of P.A-5, a novel virulent bacteriophage against Enterobacter hormaechei. Microbial Pathogenesis, 2021, 152, 104767.	2.9	12
10	Development of an ultrasensitive spectrophotometric method for carmine determination based on fluorescent carbon dots. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 731-740.	2.3	9
11	Isolation and Characterization of a Virulent Bacteriophage for Controlling Salmonella Enteritidis Growth in Ready-to-Eat Mixed-Ingredient Salads. Journal of Food Protection, 2021, 84, 1629-1639.	1.7	8
12	Nitrogen-doped carbon dots for wash-free imaging of nucleolus orientation. Mikrochimica Acta, 2021, 188, 183.	5.0	20
13	Azithromycin detection in cells and tablets by N,S co-doped carbon quantum dots. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2021, 252, 119506.	3.9	29
14	A sensitive spectrofluorimetry method based on S and N dual-doped carbon nanoparticles for ultra-trace detection of ferrocyanide ion in food salt samples. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2021, 38, 195-207.	2.3	1
15	A sensitivity enhanced fluorescence method for the detection of ferrocyanide ions in foodstuffs using carbon nanoparticles as sensing agents. Food Chemistry, 2020, 308, 125590.	8.2	20
16	An ultra-sensitive analytical platform based on bluish green emitting carbon quantum dots for the detection of curcumin in dietary foods. Journal of Food Composition and Analysis, 2020, 94, 103639.	3.9	15
17	Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chemistry, 2020, 325, 126946.	8.2	55
18	Physicochemical and antibacterial properties of fabricated ovalbumin–carvacrol gel nanoparticles. Food and Function, 2020, 11, 5133-5141.	4.6	15

Qin Hu

#	Article	IF	CITATIONS
19	Controllable Fabrication, Photoluminescence Mechanism, and Novel Application of Green–Yellow–Orange Fluorescent Carbon-Based Nanodots. ACS Biomaterials Science and Engineering, 2019, 5, 5060-5071.	5.2	8
20	Carbon quantum dots doped with phosphorus and nitrogen are a viable fluorescent nanoprobe for determination and cellular imaging of vitamin B12 and cobalt(II). Mikrochimica Acta, 2019, 186, 506.	5.0	23
21	Highly selective and sensitive detection of amaranth by using carbon dots-based nanosensor. RSC Advances, 2019, 9, 26315-26320.	3.6	25
22	A di-functional and label-free carbon-based chem-nanosensor for real-time monitoring of pH fluctuation and quantitative determining of Curcumin. Analytica Chimica Acta, 2019, 1057, 132-144.	5.4	22
23	Green synthesis of fluorescent carbon dots as an effective fluorescence probe for morin detection. Analytical Methods, 2019, 11, 353-358.	2.7	40
24	Electrochemical Magnetic Bead-Based Immunosensor for Rapid and Quantitative Detection of Probiotic Lactobacillus rhamnosus in Dairy Products. Food Analytical Methods, 2019, 12, 1197-1207.	2.6	8
25	Nitrogen and chlorine dual-doped carbon nanodots for determination of curcumin in food matrix via inner filter effect. Food Chemistry, 2019, 280, 195-202.	8.2	64
26	Isolation and characterization of virulent phages infecting Shewanella baltica and Shewanella putrefaciens, and their application for biopreservation of chilled channel catfish (Ictalurus) Tj ETQq0 0 0 rgBT /Ov	verłazk 10	Tf 390 457 Td
27	One-step microwave synthesis of carbon dots for highly sensitive and selective detection of copper ions in aqueous solution. New Journal of Chemistry, 2018, 42, 3097-3101.	2.8	79
28	Ultrafast and Energy-saving Synthesis of Nitrogen and Chlorine Co-doped Carbon Nanodots via Neutralization Heat for Selective Detection of Cr(VI) in Aqueous Phase. Sensors, 2018, 18, 3416.	3.8	15
29	N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese(VII) and <scp>l</scp> -Ascorbic Acid and AND Logic Gate Operation. ACS Applied Materials & Interfaces, 2017, 9, 38761-38772.	8.0	93
30	Chromatographic separation and mass spectrometric analysis of N-acetyl- <scp>I</scp> -cysteine-protected palladium nanoparticles. Analytical Methods, 2017, 9, 4539-4546.	2.7	7
31	Characterization and Analytical Separation of Fluorescent Carbon Nanodots. Journal of Nanomaterials, 2017, 2017, 1-23.	2.7	40
32	Editorial - Sensitivity of Analytical and Bioanalytical Techniques. Journal of Analytical & Bioanalytical Techniques, 2017, 08, .	0.6	0
33	Characterization of Nanoparticles by Mass Spectrometry. Chemical Sciences Journal, 2017, 08, .	0.1	1
34	Uptake and Accumulation of Nephrotoxic and Carcinogenic Aristolochic Acids in Food Crops Grown in <i>Aristolochia clematitis</i> -Contaminated Soil and Water. Journal of Agricultural and Food Chemistry, 2016, 64, 107-112.	5.2	37
35	An investigation on the chemical structure of nitrogen and sulfurÂcodoped carbon nanoparticles by ultra-performance liquid chromatography-tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2016, 408, 5347-5357.	3.7	31
36	Elucidating the structure of carbon nanoparticles by ultra-performance liquid chromatography coupled with electrospray ionisation quadrupole time-of-flight tandem mass spectrometry. Analytica Chimica Acta, 2016, 911, 100-107.	5.4	14

Qin Hu

#	Article	IF	CITATIONS
37	UHPLC combined with mass spectrometric study of as-synthesized carbon dots samples. Talanta, 2016, 146, 340-350.	5.5	18
38	Mass Spectrometric and Spectrofluorometric Studies of the Interaction of Aristolochic Acids with Proteins. Scientific Reports, 2015, 5, 15192.	3.3	4
39	Capillary electrophoretic study of green fluorescent hollow carbon nanoparticles. Electrophoresis, 2015, 36, 2110-2119.	2.4	16
40	High-performance liquid chromatography coupled with mass spectrometry for analysis of ultrasmall palladium nanoparticles. Talanta, 2015, 131, 632-639.	5.5	10
41	Carbon dots isolated from chromatographic fractions for sensing applications. RSC Advances, 2015, 5, 106838-106847.	3.6	11
42	Role of UHPLC in evaluating as-synthesised ligand-protected gold nanoparticles products. Analytical Methods, 2015, 7, 2452-2457.	2.7	4
43	Facile synthesis of nitrogen-doped carbon dots for Fe3+ sensing and cellular imaging. Analytica Chimica Acta, 2015, 861, 74-84.	5.4	283
44	High-quality water-soluble luminescent carbon dots for multicolor patterning, sensors, and bioimaging. RSC Advances, 2015, 5, 16972-16979.	3.6	68
45	Sensitive determination of kaempferol using carbon dots as a fluorescence probe. Talanta, 2015, 144, 390-397.	5.5	22
46	High-performance liquid chromatographic and mass spectrometric analysis of fluorescent carbon nanodots. Talanta, 2014, 129, 529-538.	5.5	33
47	Red-green-blue fluorescent hollow carbon nanoparticles isolated from chromatographic fractions for cellular imaging. Nanoscale, 2014, 6, 8162.	5.6	89
48	Better understanding of carbon nanoparticles via highâ€performance liquid chromatographyâ€fluorescence detection and mass spectrometry. Electrophoresis, 2014, 35, 2454-2462.	2.4	36
49	Green synthesis of fluorescent nitrogen/sulfur-doped carbon dots and investigation of their properties by HPLC coupled with mass spectrometry. RSC Advances, 2014, 4, 18065-18073.	3.6	88
50	Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. Journal of Chromatography A, 2013, 1304, 234-240.	3.7	66
51	Probing Histidine-Stabilized Gold Nanoclusters Product by High-Performance Liquid Chromatography and Mass Spectrometry. Journal of Physical Chemistry C, 2013, 117, 18697-18708.	3.1	35