
Seung-Hwan Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7175503/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling agent. Composites Part A: Applied Science and Manufacturing, 2006, 37, 80-91.	3.8	701
2	Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose, 2007, 14, 593-602.	2.4	183
3	Thermal degradation and biodegradability of poly (lactic acid)/corn starch biocomposites. Journal of Applied Polymer Science, 2006, 100, 3009-3017.	1.3	175
4	Salt-responsive monoolein cubic phase containing polyethyleneimine gel. Journal of Polymer Research, 2020, 27, 1.	1.2	156
5	Evaluation of interphase properties in a cellulose fiber-reinforced polypropylene composite by nanoindentation and finite element analysis. Composites Part A: Applied Science and Manufacturing, 2007, 38, 1517-1524.	3.8	152
6	Pretreatment of eucalyptus wood chips for enzymatic saccharification using combined sulfuric acid-free ethanol cooking and ball milling. Biotechnology and Bioengineering, 2008, 99, 75-85.	1.7	126
7	Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process I – Effect of additives with cellulose affinity. Bioresource Technology, 2009, 100, 275-279.	4.8	117
8	Biodegradable polyurethane foam from liquefied waste paper and its thermal stability, biodegradability, and genotoxicity. Journal of Applied Polymer Science, 2002, 83, 1482-1489.	1.3	111
9	Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers. Polymer Journal, 2014, 46, 73-76.	1.3	107
10	Major improvement in the rate and yield of enzymatic saccharification of sugarcane bagasse via pretreatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate ([Emim] [Ac]). Bioresource Technology, 2011, 102, 10505-10509.	4.8	105
11	Pretreatment of woody and herbaceous biomass for enzymatic saccharification using sulfuric acid-free ethanol cooking. Bioresource Technology, 2008, 99, 8856-8863.	4.8	104
12	Adhesive penetration of wood cell walls investigated by scanning thermal microscopy (SThM). Holzforschung, 2008, 62, 91-98.	0.9	92
13	Mechanical properties of polypropylene composites reinforced by surface-coated microfibrillated cellulose. Composites Part A: Applied Science and Manufacturing, 2014, 59, 26-29.	3.8	85
14	Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. Journal of Applied Polymer Science, 2000, 78, 319-325.	1.3	83
15	Doxorubicin-carboxymethyl xanthan gum capped gold nanoparticles: Microwave synthesis, characterization, and anti-cancer activity. Carbohydrate Polymers, 2020, 229, 115511.	5.1	83
16	Eco-composite from poly(lactic acid) and bamboo fiber. Holzforschung, 2004, 58, 529-536.	0.9	80
17	Association of wet disk milling and ozonolysis as pretreatment for enzymatic saccharification of sugarcane bagasse and straw. Bioresource Technology, 2013, 136, 288-294.	4.8	80
18	Increase in enzyme accessibility by generation of nanospace in cell wall supramolecular structure. Bioresource Technology, 2010, 101, 7218-7223.	4.8	78

#	Article	IF	CITATIONS
19	Continuous pretreatment of sugarcane bagasse at high loading in an ionic liquid using a twin-screw extruder. Green Chemistry, 2013, 15, 1991.	4.6	71
20	Resol-type phenolic resin from liquefied phenolated wood and its application to phenolic foam. Journal of Applied Polymer Science, 2002, 84, 468-472.	1.3	68
21	Cellulose nanofibrils/carbon dots composite nanopapers for the smartphone-based colorimetric detection of hydrogen peroxide and glucose. Sensors and Actuators B: Chemical, 2021, 330, 129330.	4.0	66
22	Solid-state shear pulverization as effective treatment for dispersing lignocellulose nanofibers in polypropylene composites. Cellulose, 2014, 21, 1573-1580.	2.4	65
23	Enzymatic saccharification of woody biomass micro/nanofibrillated by continuous extrusion process II: Effect of hot-compressed water treatment. Bioresource Technology, 2010, 101, 9645-9649.	4.8	61
24	Mechanical and thermal flow properties of wood flour-biodegradable polymer composites. Journal of Applied Polymer Science, 2003, 90, 1900-1905.	1.3	55
25	Cellulose nanofiber-reinforced polycaprolactone/polypropylene hybrid nanocomposite. Composites Part A: Applied Science and Manufacturing, 2011, 42, 151-156.	3.8	55
26	N-Doped carbon dots with pH-sensitive emission, and their application to simultaneous fluorometric determination of iron(III) and copper(II). Mikrochimica Acta, 2020, 187, 30.	2.5	55
27	Plasticization of cellulose diacetate by reaction with maleic anhydride, glycerol, and citrate esters during melt processing. Journal of Applied Polymer Science, 2001, 81, 243-250.	1.3	54
28	Cost reduction and feedstock diversity for sulfuric acid-free ethanol cooking of lignocellulosic biomass as a pretreatment to enzymatic saccharification. Bioresource Technology, 2009, 100, 4783-4789.	4.8	54
29	Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydrate Polymers, 2015, 128, 75-81.	5.1	53
30	Effect of aliphatic isocyanates (HDI and LDI) as coupling agents on the properties of eco-composites from biodegradable polymers and corn starch. Journal of Adhesion Science and Technology, 2004, 18, 905-924.	1.4	52
31	Crystallization behavior of poly(butylene succinate)/corn starch biodegradable composite. Journal of Applied Polymer Science, 2005, 97, 1107-1114.	1.3	50
32	Characterization of carbon nanofiber mats produced from electrospun lignin-g-polyacrylonitrile copolymer. International Journal of Biological Macromolecules, 2016, 82, 497-504.	3.6	50
33	Ultrafast synthesis of gold nanoparticles on cellulose nanocrystals via microwave irradiation and their dyes-degradation catalytic activity. Journal of Materials Science and Technology, 2020, 41, 168-177.	5.6	50
34	Bamboo nanofiber preparation by HCW and grinding treatment and its application for nanocomposite. Wood Science and Technology, 2012, 46, 393-403.	1.4	48
35	Combined pretreatment using ozonolysis and wet-disk milling to improve enzymatic saccharification of Japanese cedar. Bioresource Technology, 2012, 126, 182-186.	4.8	47
36	Effect of dimethyl sulfoxide on ionic liquid 1-ethyl-3-methylimidazolium acetate pretreatment of eucalyptus wood for enzymatic hydrolysis. Bioresource Technology, 2013, 140, 90-96.	4.8	47

#	Article	IF	CITATIONS
37	Acid-catalyzed liquefaction of waste paper in the presence of phenol and its application to Novolak-type phenolic resin. Journal of Applied Polymer Science, 2002, 83, 1473-1481.	1.3	46
38	Phase Structure and Mechanical Property of Blends of Organosolv Lignin Alkyl Esters with Poly(ε-caprolactone). Polymer Journal, 2009, 41, 219-227.	1.3	46
39	Rapid wood liquefaction by supercritical phenol. Wood Science and Technology, 2003, 37, 29-38.	1.4	45
40	Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods. Bioresource Technology, 2008, 99, 8445-8452.	4.8	44
41	Rapid in-situ growth of gold nanoparticles on cationic cellulose nanofibrils: Recyclable nanozyme for the colorimetric glucose detection. Carbohydrate Polymers, 2021, 253, 117239.	5.1	43
42	Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. Journal of Hazardous Materials, 2022, 436, 129165.	6.5	40
43	Effect of pH on surface characteristics of switchgrass-derived biochars produced by fast pyrolysis. Chemosphere, 2013, 90, 2623-2630.	4.2	39
44	Enhancement of enzymatic accessibility by fibrillation of woody biomass using batch-type kneader with twin-screw elements. Bioresource Technology, 2010, 101, 769-774.	4.8	38
45	Thin Film of Lignocellulosic Nanofibrils with Different Chemical Composition for QCM-D Study. Biomacromolecules, 2013, 14, 2420-2426.	2.6	38
46	Rapid synchronous synthesis of Ag nanoparticles and Ag nanoparticles/holocellulose nanofibrils: Hg(II) detection and dye discoloration. Carbohydrate Polymers, 2020, 240, 116356.	5.1	36
47	Physical and Chemical Properties of Kapok (Ceiba pentandra) and Balsa (Ochroma pyramidale) Fibers. Journal of the Korean Wood Science and Technology, 2018, 46, 393-401.	0.8	35
48	Spatial and temporal dynamics of cellulose degradation and biofilm formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum. AMB Express, 2011, 1, 30.	1.4	34
49	Effect of Lignin Plasticization on Physico-Mechanical Properties of Lignin/Poly(Lactic Acid) Composites. Polymers, 2019, 11, 2089.	2.0	34
50	Isothermal crystallization behavior of hybrid biocomposite consisting of regenerated cellulose fiber, clay, and poly(lactic acid). Journal of Applied Polymer Science, 2008, 108, 870-875.	1.3	33
51	Characteristics of microfibrillated cellulosic fibers and paper sheets from Korean white pine. Wood Science and Technology, 2013, 47, 925-937.	1.4	30
52	Simultaneous saccharification and fermentation and a consolidated bioprocessing for Hinoki cypress and Eucalyptus after fibrillation by steam and subsequent wet-disk milling. Bioresource Technology, 2014, 162, 89-95.	4.8	30
53	Characteristics of carbon nanofibers produced from lignin/polyacrylonitrile (PAN)/kraft lignin-g-PAN copolymer blends electrospun nanofibers. Holzforschung, 2017, 71, 743-750.	0.9	30
54	Preparation and Characterization of Cellulose Nanofibrils with Varying Chemical Compositions. BioResources, 2017, 12, .	0.5	29

#	Article	IF	CITATIONS
55	Mechanical and Thermal Properties of Polypropylene Composites Reinforced with Lignocellulose Nanofibers Dried in Melted Ethylene-Butene Copolymer. Materials, 2014, 7, 6919-6929.	1.3	28
56	Changes in chemical components of steam-treated betung bamboo strands and their effects on the physical and mechanical properties of bamboo-oriented strand boards. European Journal of Wood and Wood Products, 2019, 77, 731-739.	1.3	28
57	Next-generation engineered nanogold for multimodal cancer therapy and imaging: a clinical perspectives. Journal of Nanobiotechnology, 2022, 20, .	4.2	28
58	Preparation and properties of phenolated corn bran (CB)/phenol/formaldehyde cocondensed resin. Journal of Applied Polymer Science, 2000, 77, 2901-2907.	1.3	27
59	Bamboo fiber (BF)-filled poly(butylenes succinate) bio-composite – Effect of BF-e-MA on the properties and crystallization kinetics. Holzforschung, 2004, 58, 537-543.	0.9	27
60	Tensile shear strength of wood bonded with urea–formaldehyde with different amounts of microfibrillated cellulose. International Journal of Adhesion and Adhesives, 2015, 60, 88-91.	1.4	27
61	Microfibrillated-cellulose-modified urea-formaldehyde adhesives with different F/U molar ratios for wood-based composites. Journal of Adhesion Science and Technology, 2016, 30, 2032-2043.	1.4	27
62	Polymer blend of cellulose acetate butyrate and aliphatic polyestercarbonate. Journal of Applied Polymer Science, 2000, 77, 2908-2914.	1.3	25
63	Preparation of nanoscale cellulose materials with different morphologies by mechanical treatments and their characterization. Cellulose, 2013, 20, 1841-1852.	2.4	25
64	Highly stable and high-performance MgHPO ₄ surface-modified Ni-rich cathode materials for advanced lithium ion batteries. Journal of Materials Chemistry A, 2022, 10, 16555-16569.	5.2	25
65	Molecular composite of lignin: Miscibility and complex formation of organosolv lignin and its acetates with synthetic polymers containing vinyl pyrrolidone and/or vinyl acetate units. Journal of Applied Polymer Science, 2012, 125, 2063-2070.	1.3	24
66	Understanding the local structure of disordered carbons from cellulose and lignin. Wood Science and Technology, 2021, 55, 587-606.	1.4	24
67	Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers, 2021, 13, 2990.	2.0	24
68	Effect of Bamboo Species and Resin Content on Properties of Oriented Strand Board Prepared from Steam-treated Bamboo Strands. BioResources, 2015, 10, .	0.5	24
69	Mechanical properties and creep behavior of lyocell fibers by nanoindentation and nano-tensile testing. Holzforschung, 2007, 61, 254-260.	0.9	23
70	Effects of Steam Treatment on Physical and Mechanical Properties of Bamboo Oriented Strand Board. Journal of the Korean Wood Science and Technology, 2017, 45, 872-882.	0.8	22
71	Improvement of enzymatic saccharification of sugarcane bagasse by dilute-alkali-catalyzed hydrothermal treatment and subsequent disk milling. Bioresource Technology, 2012, 105, 95-99.	4.8	21
72	Synergistic effect of delignification and treatment with the ionic liquid 1-ethyl-3-methylimidazolium acetate on enzymatic digestibility of poplar wood. Bioresource Technology, 2014, 162, 207-212.	4.8	21

#	Article	IF	CITATIONS
73	Evaluation of the effect of hotâ€compressed water treatment on enzymatic hydrolysis of lignocellulosic nanofibrils with different lignin content using a quartz crystal microbalance. Biotechnology and Bioengineering, 2016, 113, 1441-1447.	1.7	21
74	Effects of pH on Nanofibrillation of TEMPO-Oxidized Paper Mulberry Bast Fibers. Polymers, 2019, 11, 414.	2.0	21
75	Effects of Heat Treatment on the Characteristics of Royal Paulownia (Paulownia tomentosa (Thunb.)) Tj ETQq1	1 0.784314 0.8	rgBT /Overlo
76	Cold nanoparticles spontaneously grown on cellulose nanofibrils as a reusable nanozyme for colorimetric detection of cholesterol in human serum. International Journal of Biological Macromolecules, 2022, 201, 686-697.	3.6	21
77	Liquefaction and product identification of corn bran (CB) in phenol. Journal of Applied Polymer Science, 2000, 78, 311-318.	1.3	20
78	Size engineering of metal nanoparticles to diameter-specified growth of single-walled carbon nanotubes with horizontal alignment on quartz. Nanotechnology, 2012, 23, 105607.	1.3	20
79	Shape recoverable, Au nanoparticles loaded nanocellulose foams as a recyclable catalyst for the dynamic and batch discoloration of dyes. Carbohydrate Polymers, 2021, 258, 117693.	5.1	20
80	Phenolic resol resin from phenolated corn bran and its characteristics. Journal of Applied Polymer Science, 2003, 87, 1365-1370.	1.3	19
81	Quartz crystal microbalance with dissipation monitoring of the enzymatic hydrolysis of steam-treated lignocellulosic nanofibrils. Cellulose, 2014, 21, 2433-2444.	2.4	19
82	Dewetting behavior of electron-beam-deposited Au thin films on various substrates: graphenes, quartz, and SiO2 wafers. Applied Physics A: Materials Science and Processing, 2015, 118, 389-396.	1.1	19
83	Use of cellobiohydrolase-free cellulase blends for the hydrolysis of microcrystalline cellulose and sugarcane bagasse pretreated by either ball milling or ionic liquid [Emim][Ac]. Bioresource Technology, 2013, 149, 551-555.	4.8	18
84	Adsorption Characteristics of Ag Nanoparticles on Cellulose Nanofibrils with Different Chemical Compositions. Polymers, 2020, 12, 164.	2.0	18
85	Effect of lignocellulose nanofibril and polymeric methylene diphenyl diisocyanate addition on plasticized lignin/polycaprolactone composites. BioResources, 2018, 13, 6802-6817.	0.5	18
86	Change of Heating Value, pH and FT-IR Spectra of Charcoal at Different Carbonization Temperatures. Journal of the Korean Wood Science and Technology, 2013, 41, 440-446.	0.8	18
87	In Vitro Biocompatibility of Electrospun Poly(<i>ε</i> -Caprolactone)/Cellulose Nanocrystals-Nanofibers for Tissue Engineering. Journal of Nanomaterials, 2019, 2019, 1-11.	1.5	17
88	Extrusion process to enhance the pretreatment effect of ionic liquid for improving enzymatic hydrolysis of lignocellulosic biomass. Wood Science and Technology, 2020, 54, 599-613.	1.4	17
89	Preparation of a lignin/polyaniline composite and its application in Cr(VI) removal from aqueous solutions. BioResources, 2019, 14, 9169-9182.	0.5	17
90	Polyol recovery from biomass-based polyurethane foam by glycolysis. Journal of Applied Polymer Science, 2005, 95, 975-980.	1.3	16

#	Article	IF	CITATIONS
91	Crystallization behaviour of cellulose acetate butylate/poly(butylene succinate)-co-(butylene) Tj ETQq1 1 0.784	1314.rgBT	/Overlock 10
92	Carbonization of reaction wood from Paulownia tomentosa and Pinus densiflora branch woods. Wood Science and Technology, 2016, 50, 973-987.	1.4	16
93	Recent trends in isolation of cellulose nanocrystals and nanofibrils from various forest wood and nonwood products and their application. , 2020, , 41-80.		16
94	Influence of Lignin and Polymeric Diphenylmethane Diisocyante Addition on the Properties of Poly(butylene succinate)/Wood Flour Composite. Polymers, 2019, 11, 1161.	2.0	15
95	Effect of Oxidation Time on the Properties of Cellulose Nanocrystals Prepared from Balsa and Kapok Fibers Using Ammonium Persulfate. Polymers, 2021, 13, 1894.	2.0	15
96	Cellulose Ester- <i>graft</i> -poly(ε-caprolactone): Effects of Copolymer Composition and Intercomponent Miscibility on the Enzymatic Hydrolysis Behavior. Biomacromolecules, 2009, 10, 2830-2838.	2.6	14
97	Choline chloride based deep eutectic solvents for the lignocellulose nanofibril production from Mongolian oak (Quercus mongolica). Cellulose, 2021, 28, 9169-9185.	2.4	14
98	Quality Improvement of Oil Palm Trunk Properties by Close System Compression Method. Journal of the Korean Wood Science and Technology, 2016, 44, 172-183.	0.8	14
99	Effect of Ammonium Persulfate Concentration on Characteristics of Cellulose Nanocrystals from Oil Palm Frond. Journal of the Korean Wood Science and Technology, 2019, 47, 597-606.	0.8	14
100	Effect of water on wood liquefaction and the properties of phenolated wood. Holzforschung, 2005, 59, 628-634.	0.9	13
101	Dimension change in microfibrillated cellulose from different cellulose sources by wet disk milling and its effect on the properties of PVA nanocomposite. Wood Science and Technology, 2015, 49, 495-506.	1.4	13
102	Preparation and Properties of Holocellulose Nanofibrils with Different Hemicellulose Content. BioResources, 2017, 12, .	0.5	13
103	Effect of Tree Age and Active Alkali on Kraft Pulping of White Jabon. Journal of the Korean Wood Science and Technology, 2015, 43, 566-577.	0.8	13
104	Characteristics of nanocellulose crystals from balsa and kapok fibers at different ammonium persulfate concentrations. Wood Science and Technology, 2021, 55, 1319-1335.	1.4	12
105	Nanoindentation of biodegradable cellulose diacetate-graft-poly(L-lactide) copolymers: Effect of molecular composition and thermal aging on mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2007, 45, 1114-1121.	2.4	11
106	Application of thermophilic enzymes and water jet system to cassava pulp. Bioresource Technology, 2012, 126, 87-91.	4.8	11
107	Effect of catalytic metals on diameter-controlled growth of single-walled carbon nanotubes: Comparison between Fe and Au. Electronic Materials Letters, 2012, 8, 5-9.	1.0	11
108	Destructive and Non-destructive Tests of Bamboo Oriented Strand Board under Various Shelling Ratios and Resin Contents. Journal of the Korean Wood Science and Technology, 2019, 47, 519-532.	0.8	11

#	Article	IF	CITATIONS
109	Visualization of interfacial zones in lyocell fiber-reinforced polypropylene composite by AFM contrast imaging based on phase and thermal conductivity measurements. Holzforschung, 2009, 63, 240-247.	0.9	10
110	Microfibril angle, crystalline characteristics, and chemical compounds of reaction wood in stem wood of Pinus densiflora. Wood Science and Technology, 2020, 54, 123-137.	1.4	10
111	Esterification of Lignin Isolated by Deep Eutectic Solvent Using Fatty Acid Chloride, and Its Composite Film with Poly(lactic acid). Polymers, 2021, 13, 2149.	2.0	10
112	Integrating the high peroxidase activity of carbon dots with easy recyclability: Immobilization on dialdehyde cellulose nanofibrils and cholesterol detection. Applied Materials Today, 2022, 26, 101286.	2.3	10
113	Changes in the Dimensions of Lignocellulose Nanofibrils with Different Lignin Contents by Enzymatic Hydrolysis. Polymers, 2020, 12, 2201.	2.0	9
114	Improvement of enzymatic saccharification of Populus and switchgrass by combined pretreatment with steam and wetAdiskAmilling. Renewable Energy, 2015, 76, 782-789.	4.3	8
115	Preparation and Characteristics of Wet-Spun Filament Made of Cellulose Nanofibrils with Different Chemical Compositions. Polymers, 2020, 12, 949.	2.0	8
116	Preparation and Properties of Wet-Spun Microcomposite Filaments from Various CNFs and Alginate. Polymers, 2021, 13, 1709.	2.0	8
117	Property comparison of thermoplastic starch reinforced by cellulose nanofibrils with different chemical compositions. BioResources, 2019, 14, 1564-1578.	0.5	8
118	Carbonization Characteristics of Juvenile Woods from Some Tropical Trees Planted in Indonesia. Journal of the Faculty of Agriculture, Kyushu University, 2017, 62, 145-152.	0.1	8
119	Effect of Bark Content and Densification Temperature on The Properties of Oil Palm Trunk-Based Pellets. Journal of the Korean Wood Science and Technology, 2017, 45, 671-681.	0.8	8
120	Ring-Opening Polymerization of Cyclic Esters onto Liquefied Biomass. Journal of Polymers and the Environment, 2004, 12, 203-210.	2.4	7
121	Solubility of kraft lignin-g-polyacrylonitrile copolymer in various ionic liquids and characterization of its solution. Wood Science and Technology, 2017, 51, 151-163.	1.4	7
122	Co-solvent system of [EMIM]Ac and DMF to improve the enzymatic saccharification of pussy willow (<i>Salix gracilistyla</i> Miq.). Holzforschung, 2017, 71, 43-50.	0.9	7
123	Green synthesis of AgNPs using lignocellulose nanofibrils as a reducing and supporting agent. BioResources, 2020, 15, 2119-2132.	0.5	7
124	Termite Resistance of The Less Known Tropical Woods Species Grown in West Java, Indonesia. Journal of the Korean Wood Science and Technology, 2015, 43, 248-257.	0.8	7
125	Effect of Hot-Compressed Water Treatment of Bamboo Fiber on the Properties of Polypropylene/Bamboo Fiber Composite. BioResources, 2014, 10, .	0.5	6
126	Effect of Temperature and Clamping during Heat Treatment on Physical and Mechanical Properties of Okan (Cylicodiscus gabunensis [Taub.] Harms) Wood. BioResources, 2015, 10, .	0.5	6

#	Article	IF	CITATIONS
127	Preparation and Properties of Cellulose Nanofiber Films with Various Chemical Compositions Impregnated by Ultraviolet-Curable Resin. BioResources, 2016, 12, .	0.5	6
128	Polar molecule filtration using charged cellulose nanofiber membrane on the nanoporous alumina support for high rejection efficiency. Cellulose, 2020, 27, 2685-2694.	2.4	6
129	Spray-dried microparticles composed of carboxylated cellulose nanofiber and cysteamine and their oxidation-responsive release property. Colloid and Polymer Science, 2020, 298, 157-167.	1.0	6
130	Effect of Treatment Duration and Clamping on the Properties of Heat-Treated Okan Wood. BioResources, 2016, 11, .	0.5	6
131	Treatment effects of choline chloride-based deep eutectic solvent on the chemical composition of red pine (Pinus densiflora). BioResources, 2020, 15, 6457-6470.	0.5	6
132	Preparation of Lignocellulose Nanofibers from Korean White Pine and Its Application to Polyurethane Nanocomposite. Journal of the Korean Wood Science and Technology, 2014, 42, 700-707.	0.8	6
133	Overview of the Preparation Methods of Nano-scale Cellulose. Palpu Chongi Gisul/Journal of Korea Technical Association of the Pulp and Paper Industry, 2017, 49, 9-17.	0.1	6
134	Preparation and Characterization of Polybutylene Succinate Reinforced with Pure Cellulose Nanofibril and Lignocellulose Nanofibril Using Two-Step Process. Polymers, 2021, 13, 3945.	2.0	6
135	Anatomical Characteristics of Paulownia tomentosa Root Wood. Journal of the Korean Wood Science and Technology, 2016, 44, 157-165.	0.8	5
136	Characteristics of White Charcoal Produced from the Charcoal Kiln for Thermotherapy. Journal of the Korean Wood Science and Technology, 2018, 46, 527-540.	0.8	5
137	Quick assessment of the thermal decomposition behavior of lignocellulosic biomass by near infrared spectroscopy and its statistical analysis. Journal of Applied Polymer Science, 2009, 114, 3229-3234.	1.3	4
138	Scale of Homogeneous Mixing in Miscible Blends of Organosolv Lignin Esters with Poly(<i>ïµ</i> -caprolactone). Journal of Wood Chemistry and Technology, 2010, 30, 330-347.	0.9	4
139	Continuous live cell imaging of cellulose attachment by microbes under anaerobic and thermophilic conditions using confocal microscopy. Journal of Environmental Sciences, 2013, 25, 849-856.	3.2	4
140	Evolution of gold thin films to nanoparticles using plasma ion bombardment and their use as a catalyst for carbon nanotube growth. Thin Solid Films, 2013, 547, 188-192.	0.8	4
141	Effect of enzyme and ammonia treatments in green composite systems. Journal of Composite Materials, 2013, 47, 3249-3255.	1.2	4
142	Effect of Different Delignification Degrees of Korean White Pine Wood on Fibrillation Efficiency and Tensile Properties of Nanopaper. Journal of the Korean Wood Science and Technology, 2015, 43, 17-24.	0.8	4
143	Changes of Micro- and Nanoscopic Morphology of Various Bioresources by Different Milling Systems. Journal of the Korean Wood Science and Technology, 2017, 45, 737-745.	0.8	4
144	Characterization of cellulose nanocrystal with cellulose II polymorph from primary sludge and its application to PVA nanocomposites. Wood Science and Technology, 2018, 52, 555-565.	1.4	3

#	Article	IF	CITATIONS
145	Liquefaction of corn bran (CB) in the presence of alcohols and preparation of polyurethane foam from its liquefied polyol. , 2000, 78, 319.		3
146	Effect of pMDI as Coupling Agent on The Properties of Microfibrillated Cellulose-reinforced PBS Nanocomposite. Journal of the Korean Wood Science and Technology, 2014, 42, 483-490.	0.8	3
147	Graphene-Based Smart Nanomaterials for Photothermal Therapy. Nanotechnology in the Life Sciences, 2021, , 125-153.	0.4	3
148	Effect of Fibrillation on the Performance of Wood-Plastic Composites with High Filler Content. Journal of Fiber Science and Technology, 2010, 67, 1-7.	0.0	2
149	Wet-Spun Composite Filaments from Lignocellulose Nanofibrils/Alginate and Their Physico-Mechanical Properties. Polymers, 2021, 13, 2974.	2.0	2
150	Effect of Nanocellulose and Aminated Starch on Tensile and Thermal Properties of Plasticized Starch Film. Journal of the Korean Wood Science and Technology, 2014, 42, 376-384.	0.8	2
151	Size Fractionation of Cellulose Nanofibers by Settling Method and Their Morphology. Journal of the Korean Wood Science and Technology, 2016, 44, 398-405.	0.8	2
152	Experimental Design and Study of Micro-nano Wood Fiber Processed by Nanosecond Pulse Laser. BioResources, 2016, 11, .	0.5	1
153	Delignification Effect on Properties of Lignocellulose Nanofibers from Korean White Pine and Their Nanopapers. Journal of the Korean Wood Science and Technology, 2015, 43, 9-16.	0.8	1
154	Effect of The Addition of Various Cellulose Nanofibers on The Properties of Sheet of Paper Mulberry Bast Fiber. Journal of the Korean Wood Science and Technology, 2015, 43, 730-739.	0.8	1
155	Nano-scopic Fibrillated Product from Lignocellulose and Its Enzymatic Saccharification and Nanocomposite Application. Nippon Gomu Kyokaishi, 2013, 86, 46-50.	0.0	Ο
156	Size Control of Gold Nanoparticles by Heat Treatment and Its Use as a Catalyst for Single-Walled Carbon Nanotube Growth. Korean Journal of Materials Research, 2013, 23, 737-744.	0.1	0
157	Pretreatment of pussy willow and Korean pine using various ionic liquids and their mixtures with organic solvents for enzymatic saccharification. BioResources, 2020, 16, 455-469.	0.5	0
158	A Comparative Study of the Bending Properties of Dahurian Larch and Japanese Larch Grown in Korea. Forests, 2022, 13, 1074.	0.9	0