
Daniel Grande

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7175351/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comprehensive review on electrospinning techniques as versatile approaches toward antimicrobial biopolymeric composite fibers. Materials Science and Engineering C, 2019, 101, 306-322.	7.3	133
2	Phenolic resins: 2. Influence of catalyst type on reaction mechanisms and kinetics. Polymer, 1996, 37, 1363-1369.	3.8	125
3	Electrospinning as a powerful technique for biomedical applications: a critically selected survey. Journal of Biomaterials Science, Polymer Edition, 2016, 27, 157-176.	3.5	118
4	Biocomposite scaffolds based on electrospun poly(3-hydroxybutyrate) nanofibers and electrosprayed hydroxyapatite nanoparticles for bone tissue engineering applications. Materials Science and Engineering C, 2014, 38, 161-169.	7.3	116
5	Porous structure of ion exchange membranes investigated by various techniques. Advances in Colloid and Interface Science, 2017, 246, 196-216.	14.7	106
6	Glycosaminoglycan Mimetic Biomaterials. 4. Synthesis of Sulfated Lactose-Based Glycopolymers That Exhibit Anticoagulant Activity. Biomacromolecules, 2002, 3, 1065-1070.	5.4	99
7	Design and Synthesis of Biotin Chain-Terminated Glycopolymers for Surface Glycoengineering. Journal of the American Chemical Society, 2002, 124, 7258-7259.	13.7	99
8	Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. Journal of Membrane Science, 2014, 452, 104-116.	8.2	81
9	New cation-exchange membranes based on cross-linked sulfonated polystyrene and polyethylene for power generation systems. Journal of Membrane Science, 2016, 515, 196-203.	8.2	79
10	Ageing of ion-exchange membranes in electrodialysis: A structural and physicochemical investigation. Journal of Membrane Science, 2013, 436, 68-78.	8.2	74
11	Novel antibacterial electrospun mats based on poly(d,l-lactide) nanofibers and zinc oxide nanoparticles. Journal of Materials Science, 2014, 49, 8373-8385.	3.7	69
12	Effects of acid–base cleaning procedure on structure and properties of anion-exchange membranes used in electrodialysis. Journal of Membrane Science, 2016, 507, 12-23.	8.2	69
13	Evolution of anion-exchange membrane properties in a full scale electrodialysis stack. Journal of Membrane Science, 2013, 446, 255-265.	8.2	63
14	Mitigation of membrane scaling in electrodialysis by electroconvection enhancement, pH adjustment and pulsed electric field application. Journal of Membrane Science, 2018, 549, 129-140.	8.2	62
15	Glycosaminoglycan Mimetic Biomaterials. 2. Alkene- and Acrylate-Derivatized Glycopolymers via Cyanoxyl-Mediated Free-Radical Polymerization. Macromolecules, 2001, 34, 1640-1646.	4.8	61
16	Electrospinning and electrospraying techniques for designing novel antibacterial poly(3-hydroxybutyrate)/zinc oxide nanofibrous composites. Journal of Materials Science, 2016, 51, 8593-8609.	3.7	61
17	Poly(d,l-lactide)/poly(methyl methacrylate) interpenetrating polymer networks: Synthesis, characterization, and use as precursors to porous polymeric materials. Polymer, 2007, 48, 7017-7028.	3.8	57
18	Design of functionalized biodegradable PHA-based electrospun scaffolds meant for tissue engineering applications. New Biotechnology, 2017, 37, 129-137.	4.4	52

#	Article	IF	CITATIONS
19	From design of bio-based biocomposite electrospun scaffolds to osteogenic differentiation of human mesenchymal stromal cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 1563-1575.	3.6	47
20	Design of Porous Polymeric Materials from Interpenetrating Polymer Networks (IPNs):Â Poly(dl-lactide)/Poly(methyl methacrylate)-Based Semi-IPN Systems. Macromolecules, 2005, 38, 7274-7285.	4.8	45
21	Glycosaminoglycan-Mimetic Biomaterials. 3. Glycopolymers Prepared from Alkene-Derivatized Mono- and Disaccharide-Based Glycomonomers. Bioconjugate Chemistry, 2002, 13, 1309-1313.	3.6	44
22	Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems. Progress in Polymer Science, 2019, 96, 21-42.	24.7	43
23	Ageing of ion-exchange membranes used in electrodialysis: Investigation of static parameters, electrolyte permeability and tensile strength. Separation and Purification Technology, 2011, 80, 270-275.	7.9	42
24	Improvement of mechanical properties and antibacterial activity of electrospun poly(d , l) Tj ETQq0 0 0 rgBT /Ov Chemistry and Physics, 2016, 182, 324-331.	erlock 10 7 4.0	rf 50 547 To 42
25	Versatile Photochemical Surface Modification of Biopolyester Microfibrous Scaffolds with Photogenerated Silver Nanoparticles for Antibacterial Activity. Advanced Healthcare Materials, 2013, 2, 1008-1018.	7.6	37
26	Effect of homogenization and hydrophobization of a cation-exchange membrane surface on its scaling in the presence of calcium and magnesium chlorides during electrodialysis. Journal of Membrane Science, 2017, 540, 183-191.	8.2	37
27	Ageing of ion-exchange membranes in oxidant solutions. Separation and Purification Technology, 2009, 69, 43-47.	7.9	32
28	Functionalized ordered nanoporous polymeric materials: From the synthesis of diblock copolymers to their nanostructuration and their selective degradation. Microporous and Mesoporous Materials, 2011, 140, 34-39.	4.4	32
29	Water desalination by neutralization dialysis with ion-exchange membranes: Flow rate and acid/alkali concentration effects. Desalination, 2015, 361, 13-24.	8.2	32
30	Structural and physicochemical investigation of ageing of ion-exchange membranes in electrodialysis for food industry. Separation and Purification Technology, 2014, 123, 229-234.	7.9	31
31	Facile fabrication of doubly porous polymeric materials with controlled nano- and macro-porosity. Polymer, 2015, 78, 13-21.	3.8	31
32	Influence of the water state on the ionic conductivity of ion-exchange membranes based on polyethylene and sulfonated grafted polystyrene. Materials Chemistry and Physics, 2017, 197, 192-199.	4.0	28
33	"Clickable―thiol-functionalized nanoporous polymers: from their synthesis to further adsorption of gold nanoparticles and subsequent use as efficient catalytic supports. Polymer Chemistry, 2015, 6, 8105-8111.	3.9	26
34	Swelling and permeability of Nafion®117 in water–methanol solutions: An experimental and modelling investigation. Journal of Membrane Science, 2011, 377, 54-64.	8.2	25
35	Application of ionic liquids in thermosetting polymers: Epoxy and cyanate ester resins. EXPRESS Polymer Letters, 2018, 12, 898-917.	2.1	25
36	Engineering functional doubly porous PHEMA-based materials. Polymer, 2014, 55, 373-379.	3.8	24

#	Article	IF	CITATIONS
37	Designing and modeling doubly porous polymeric materials. European Physical Journal: Special Topics, 2015, 224, 1689-1706.	2.6	24
38	Porous Gold Nanoparticle-Decorated Nanoreactors Prepared from Smartly Designed Functional Polystyrene- <i>block</i> -Poly(<scp>d</scp> , <scp>l</scp> -Lactide) Diblock Copolymers: Toward Efficient Systems for Catalytic Cascade Reaction Processes. ACS Applied Materials & Interfaces, 2017, 9, 31279-31290.	8.0	22
39	Electrospun Fibers and Sorbents as a Possible Basis for Effective Composite Wound Dressings. Micromachines, 2020, 11, 441.	2.9	22
40	Porous polystyrene-based monolithic materials templated by semi-interpenetrating polymer networks for capillary electrochromatography. Polymer, 2010, 51, 5890-5894.	3.8	21
41	Microwaveâ€Assisted Ringâ€Opening Polymerization of <scp>D</scp> , <scp>L</scp> ‣actide: A Probe for the Nonexistence of Nonthermal Microwave Effects. Macromolecular Chemistry and Physics, 2012, 213, 784-788.	2.2	21
42	Drugs Loaded into Electrospun Polymeric Nanofibers for Delivery. Journal of Pharmacy and Pharmaceutical Sciences, 2019, 22, 313-331.	2.1	21
43	Novel hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-based polyHIPEs. Reactive and Functional Polymers, 2018, 132, 51-59.	4.1	20
44	Novel Functional Mesoporous Materials Obtained from Nanostructured Diblock Copolymers. Macromolecular Symposia, 2010, 287, 127-134.	0.7	19
45	Original route to polylactide–polystyrene diblock copolymers containing a sulfonyl group at the junction between both blocks as precursors to functional nanoporous materials. Reactive and Functional Polymers, 2012, 72, 495-502.	4.1	19
46	Novel routes to epoxy functionalization of PHA-based electrospun scaffolds as ways to improve cell adhesion. Journal of Polymer Science Part A, 2014, 52, 816-824.	2.3	19
47	UV-cured thiol–ene eugenol/ZnO composite materials with antibacterial properties. RSC Advances, 2016, 6, 88135-88142.	3.6	19
48	Toward the controlled production of oligoesters by microwave-assisted degradation of poly(3-hydroxyalkanoate)s. Polymer Degradation and Stability, 2012, 97, 322-328.	5.8	18
49	Oneâ€Pot Formation of ZnOâ€ <i>graft</i> â€Poly(<scp>d</scp> , <scp>l</scp> ‣actide) Hybrid Systems via Microwaveâ€Assisted Polymerization of <scp>d</scp> , <scp>l</scp> ‣actide in the Presence of ZnO Nanoparticles. Macromolecular Chemistry and Physics, 2015, 216, 1629-1637.	2.2	17
50	Synthesis, morphology, and thermal stability of nanoporous cyanate ester resins obtained upon controlled monomer conversion. European Polymer Journal, 2015, 73, 94-104.	5.4	16
51	From the functionalization of polyelectrolytes to the development of a versatile approach to the synthesis of polyelectrolyte multilayer films with enhanced stability. Journal of Materials Chemistry A, 2017, 5, 24472-24483.	10.3	16
52	Porous Poly(styreneâ€ <i>co</i> â€divinylbenzene) Neutral Monolith: From Design and Characterization to Reversedâ€Phase Capillary Electrochromatography Applications. Macromolecular Chemistry and Physics, 2012, 213, 64-71.	2.2	15
53	Feature Article: Design of Porous Polymeric Materials from Miscellaneous Macromolecular Architectures: An Overview. Polymer News, 2004, 29, 205-212.	0.1	15
54	Cyanoxyl-mediated free-radical polymerization of acrylic acid: Its scope and limitations. Journal of Polymer Science Part A, 2005, 43, 519-533.	2.3	14

#	Article	IF	CITATIONS
55	Microwaveâ€assisted synthesis and characterization of biodegradable block copolyesters based on poly(3â€hydroxyalkanoate)s and poly(<scp>D,L</scp> â€lactide). Journal of Polymer Science Part A, 2012, 50, 1445-1455.	2.3	14
56	Annealing behavior and thermal stability of nanoporous polymer films based on high-performance Cyanate Ester Resins. Polymer Degradation and Stability, 2015, 120, 402-409.	5.8	14
57	Tailoring doubly porous poly(2-hydroxyethyl methacrylate)-based materials via thermally induced phase separation. Polymer, 2016, 86, 138-146.	3.8	14
58	Drying of a Compressible Biporous Material. Physical Review Applied, 2020, 13, .	3.8	14
59	Computation of permeability with Fast Fourier Transform from 3-D digital images of porous microstructures. International Journal of Numerical Methods for Heat and Fluid Flow, 2016, 26, 1328-1345.	2.8	13
60	Gold nanoparticles immobilized on porous monoliths obtained from disulfide-based dimethacrylate: Application to supported catalysis. Polymer, 2017, 126, 455-462.	3.8	13
61	Photo-degradation of electrospun composite mats based on poly(D,L-lactide) submicron fibers and zinc oxide nanoparticles. Polymer Degradation and Stability, 2018, 152, 95-104.	5.8	13
62	Computation of macroscopic permeability of doubly porous media with FFT based numerical homogenization method. European Journal of Mechanics, B/Fluids, 2020, 83, 141-155.	2.5	12
63	Nanopore generation in hybrid polycyanurate/poly(ε-caprolactone) thermostable networks. European Polymer Journal, 2011, 47, 1736-1745.	5.4	11
64	Nanoporous Polymer Films of Cyanate Ester Resins Designed by Using Ionic Liquids as Porogens. Nanoscale Research Letters, 2017, 12, 126.	5.7	11
65	Structureâ^'Property relationships in nanocomposites based on cyanate ester resins and 1-heptyl pyridinium tetrafluoroborate ionic liquid. Polymer, 2018, 148, 14-26.	3.8	11
66	Photoinduced synthesis of antibacterial hydrogel from aqueous photoinitiating system. European Polymer Journal, 2020, 138, 109936.	5.4	11
67	Non-covalent functionalization of single walled carbon nanotubes with Fe-/Co-porphyrin and Co-phthalocyanine for field-effect transistor applications. Organic Electronics, 2021, 96, 106212.	2.6	11
68	Novel mesoporous high-performance films derived from polycyanurate networks containing high-boiling temperature liquids. European Polymer Journal, 2013, 49, 2162-2171.	5.4	10
69	Simultaneous Au ^{III} Extraction and Inâ€Situ Formation of Polymeric Membraneâ€5upported Au Nanoparticles: A Sustainable Process with Application in Catalysis. ChemSusChem, 2017, 10, 1482-1493.	6.8	10
70	Acceleration effect of ionic liquids on polycyclotrimerization of dicyanate esters. EXPRESS Polymer Letters, 2016, 10, 722-729.	2.1	10
71	Synergistic actions of mixed small and large pores for capillary absorption through biporous polymeric materials. Soft Matter, 2018, 14, 8137-8146.	2.7	9
72	Macroscopic permeability of doubly porous materials with cylindrical and spherical macropores. Meccanica, 2019, 54, 1583-1596.	2.0	9

#	Article	lF	CITATIONS
73	Optimization of the Synthesis of Natural Polymeric Nanoparticles of Inulin Loaded with Quercetin: Characterization and Cytotoxicity Effect. Pharmaceutics, 2022, 14, 888.	4.5	9
74	Experimental investigation of neutralization dialysis in three-compartment membrane stack. Desalination and Water Treatment, 2015, 56, 2567-2575.	1.0	8
75	Nanoporous networks derived from functional semi-Interpenetrating Polymer Networks: Preparation and use as ion-exchange chromatographic supports. Polymer Bulletin, 2008, 61, 129-135.	3.3	7
76	Novel Polymeric Materials with Double Porosity: Synthesis and Characterization. Macromolecular Symposia, 2014, 340, 18-27.	0.7	7
77	Ageing of ion-exchange membranes used in an electrodialysis for food industry: SEM, EDX, and limiting current investigations. Desalination and Water Treatment, 2015, 56, 2561-2566.	1.0	7
78	In situ investigation of electrical inhomogeneity of ion exchange membrane surface using scanning electrochemical microscopy. Petroleum Chemistry, 2016, 56, 1006-1013.	1.4	7
79	Fractional factorial design of water desalination by neutralization dialysis process: concentration, flow rate, and volume effects. Desalination and Water Treatment, 2016, 57, 14403-14413.	1.0	7
80	Versatile functionalization platform of biporous poly(2-hydroxyethyl methacrylate)-based materials: Application in heterogeneous supported catalysis. Reactive and Functional Polymers, 2017, 121, 91-100.	4.1	7
81	Performance of Zinc Oxide Nanoparticles as Polymerization Initiating Systems in the Microwaveâ€Assisted Synthesis of Poly(<scp>d</scp> , <scp>l</scp> â€Lactide)/ZnO Nanocomposites. Macromolecular Symposia, 2017, 374, 1600102.	0.7	6
82	Novel Routes to Functional (Meso)Porous Crossâ€Linked Polymers Using (Semiâ€) Interpenetrating Polymer Networks as Nanostructured Precursors. Macromolecular Symposia, 2010, 291-292, 168-176.	0.7	5
83	A new route toward imidazoline-functionalized porous polymeric materials from corresponding polystyrene-polylactide diblock copolymers. Reactive and Functional Polymers, 2016, 104, 62-70.	4.1	5
84	Two-step syneretic formation of highly porous morphology during copolymerization of hydroxyethyl methacrylate and ethylene glycol dimethylacrylate. Materials Today Communications, 2016, 7, 16-21.	1.9	5
85	Effect of ionic liquids on kinetic parameters of dicyanate ester polycyclotrimerization and on thermal and viscoelastic properties of resulting cyanate ester resins. EXPRESS Polymer Letters, 2019, 13, 469-483.	2.1	5
86	Nanoporous Polycyanurates Created by Chemicallyâ€Induced Phase Separation: Structureâ€Property Relationships. Macromolecular Symposia, 2014, 341, 57-66.	0.7	4
87	Oligoester-Derivatized (Semi-)Interpenetrating Polymer Networks as Nanostructured Precursors to Porous Materials with Tunable Porosity. Chemistry Africa, 2019, 2, 253-265.	2.4	4
88	Versatile approach to nanoporous polymers with bicontinuous morphology using metal templated synthesis. European Polymer Journal, 2021, 153, 110509.	5.4	4
89	Wood-Mimicking Bio-Based Biporous Polymeric Materials with Anisotropic Tubular Macropores. Polymers, 2021, 13, 2692.	4.5	4
90	Gold nanoparticles supported onto amine-functionalized in-capillary monoliths meant for flow-through catalysis: A comparative study. Polymer, 2021, 230, 124014.	3.8	4

#	Article	IF	CITATIONS
91	Mesoporous Polymeric Materials Tailored from Oligoesterâ€Derivatized Interpenetrating Polymer Networks. Macromolecular Symposia, 2008, 267, 21-26.	0.7	3
92	Functional Nanoporous Materials From Boronate-Containing Stimuli-Responsive Diblock Copolymers. Polymer Chemistry, 0, , .	3.9	3
93	Electrospinning and Electrospraying Techniques for Designing Antimicrobial Polymeric Biocomposite Mats. , 0, , .		2
94	Functionalized Doubly Porous Networks: From Synthesis to Application in Heterogeneous Catalysis. Macromolecular Symposia, 2016, 365, 40-48.	0.7	2
95	Investigation of morphology associated with biporous polymeric materials obtained by the double porogen templating approach. Colloid and Polymer Science, 2021, 299, 537-550.	2.1	2
96	Synthesis of triazole-functionalized diblock copolymers as templates for porous materials. Reactive and Functional Polymers, 2021, 164, 104919.	4.1	2
97	Raw and processed data used in non-covalent functionalization of single walled carbon nanotubes with Co-porphyrin and Co-phthalocyanine and its effect on field-effect transistor characteristics. Data in Brief, 2021, 38, 107366.	1.0	2
98	Matériaux poreux fonctionnalisés issus de réseaux (semi)-interpénétrés de polymères : synthèse e caractérisation. Materiaux Et Techniques, 2013, 101, 405.	t _{0.9}	2
99	Biporous Crosslinked Polymers With Controlled Pore Size and Connectivity. Macromolecular Symposia, 2016, 365, 49-58.	0.7	1
100	Nanoporous Cyanate Ester Resins: Structure-Gas Transport Property Relationships. Nanoscale Research Letters, 2017, 12, 305.	5.7	1
101	Controlled allylation of polyelectrolytes: a deep insight into chemical aspects and their applicability as building blocks for robust multilayer coatings. Pure and Applied Chemistry, 2019, 91, 983-995.	1.9	1
102	Evaluation of halogen chain-end functionality in 2-bromo-2-methylpropanoate esters of poly(oxyalkylene) polymers by MALDI-TOF spectroscopy. Polymer Bulletin, 2020, 78, 5641.	3.3	1
103	Thermally stable nanoporous cyanate ester resin/linear polyurethane hybrid networks created by nuclear technologies. Polymer, 2021, 228, 123831.	3.8	1
104	Study of functionality of polymer films by dense electron beams. Polymer Journal, 2020, 42, 254-261.	0.1	1
105	Harnessing Biopolyesters in the Design of Functional and Nanostructured Architectures. ACS Symposium Series, 2012, , 187-199.	0.5	0
106	Use of Micro- and Nano-ZnO particles as Catalysts for the Microwave-Assisted Polymerization of D,L-lactide. Materials Research Society Symposia Proceedings, 2015, 1767, 3-9.	0.1	0
107	Advances in design and modeling of porous materials. European Physical Journal: Special Topics, 2015, 224, 1653-1653.	2.6	0
108	Thermal decomposition of diethyl ketone triperoxide in methyl methacrylate: Theoretical and experimental study of the initial solvation state and its influence on the polymerization process. Journal of Applied Polymer Science, 2016, 133, .	2.6	0

#	Article	IF	CITATIONS
109	Réseaux dégradables à base de polylactide renforcés par la cellulose. Materiaux Et Techniques, 2014, 102, 202.	0.9	Ο
110	Les matériaux poreux : un domaine scientifique et technologique pluridisciplinaire au futur radieux. Materiaux Et Techniques, 2015, 103, 701.	0.9	0