Kimberly A Watson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7175280/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal structure and metal binding properties of the periplasmic iron component EfeM from Pseudomonas syringae EfeUOB/M iron-transport system. BioMetals, 2022, 35, 573-589.	4.1	3
2	The role of propeptide-mediated autoinhibition and intermolecular chaperone in the maturation of cognate catalytic domain in leucine aminopeptidase. Journal of Structural Biology, 2021, 213, 107741.	2.8	3
3	Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. International Journal of Molecular Sciences, 2021, 22, 11662.	4.1	3
4	Super-Resolution Fluorescence Microscopy Reveals Clustering Behaviour of Chlamydia pneumoniae's Major Outer Membrane Protein. Biology, 2020, 9, 344.	2.8	5
5	Conjugation of haloperidol to PEG allows peripheral localisation of haloperidol and eliminates CNS extrapyramidal effects. Journal of Controlled Release, 2020, 322, 227-235.	9.9	8
6	Whey-Derived Peptides Interactions with ACE by Molecular Docking as a Potential Predictive Tool of Natural ACE Inhibitors. International Journal of Molecular Sciences, 2020, 21, 864.	4.1	37
7	Isorhapontigenin, a resveratrol analogue selectively inhibits ADP-stimulated platelet activation. European Journal of Pharmacology, 2019, 862, 172627.	3.5	20
8	The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Advances, 2018, 2, 2973-2985.	5.2	49
9	Disruption of the homeodomain transcription factor orthopedia homeobox (Otp) is associated with obesity and anxiety. Molecular Metabolism, 2017, 6, 1419-1428.	6.5	15
10	A structural approach to the design of FXR ligands. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C173-C173.	0.1	0
11	Structure–function characterisation of <i>Chlamydia pneumoniae</i> MOMP. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C390-C390.	0.1	Ο
12	Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances, 2016, 6, 64544-64556.	3.6	26
13	GRID and docking analyses reveal a molecular basis for flavonoid inhibition of Src family kinase activity. Journal of Nutritional Biochemistry, 2015, 26, 1156-1165.	4.2	20
14	Exploring quercetin and luteolin derivatives as antiangiogenic agents. European Journal of Medicinal Chemistry, 2015, 97, 259-274.	5.5	47
15	Defining Key Structural Determinants for the Pro-osteogenic Activity of Flavonoids. Journal of Natural Products, 2015, 78, 2598-2608.	3.0	7
16	Synthesis of prebiotic galactooligosaccharides from lactose using bifidobacterial β-galactosidase (BbgIV) immobilised on DEAE-Cellulose, Q-Sepharose and amino-ethyl agarose. Biochemical Engineering Journal, 2014, 82, 188-199.	3.6	37
17	Optimisation of Recombinant Production of Active Human Cardiac SERCA2a ATPase. PLoS ONE, 2013, 8, e71842.	2.5	9
18	A Novel Transport Mechanism for MOMP in Chlamydophila pneumoniae and Its Putative Role in	2.5	6

Immune-Therapy. PLoS ONE, 2013, 8, e61139.

KIMBERLY A WATSON

#	Article	IF	CITATIONS
19	Titanocene anticancer complexes and their binding mode of action to human serum albumin: A computational study. Metallomics, 2011, 3, 152.	2.4	18
20	Is Virtual Reality a Memorable Experience in an Educational Context?. International Journal of Emerging Technologies in Learning, 2011, 6, 53-57.	1.3	18
21	EfeO-cupredoxins: major new members of the cupredoxin superfamily with roles in bacterial iron transport. BioMetals, 2010, 23, 1-17.	4.1	57
22	Purification and Functional Characterisation of Rhiminopeptidase A, a Novel Aminopeptidase from the Venom of Bitis gabonica rhinoceros. PLoS Neglected Tropical Diseases, 2010, 4, e796.	3.0	33
23	Isolation and characterisation of EfeM, a periplasmic component of the putative EfeUOBM iron transporter of Pseudomonas syringae pv. syringae. Biochemical and Biophysical Research Communications, 2010, 398, 366-371.	2.1	11
24	Preliminary X-ray diffraction analysis of YqjH from <i>Escherichia coli</i> : a putative cytoplasmic ferri-siderophore reductase. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 792-796.	0.7	11
25	Overproduction, purification and preliminary X-ray diffraction analysis of YncE, an iron-regulated Sec-dependent periplasmic protein from <i>Escherichia coli</i> . Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 966-969.	0.7	9
26	Effect of sulphation on the oestrogen agonist activity of the phytoestrogens genistein and daidzein in MCF-7 human breast cancer cells. Journal of Endocrinology, 2008, 197, 503-515.	2.6	58
27	AT ₁ Receptor Ligands: Virtual creeningâ€Based Design with TOPP Descriptors, Synthesis, and Biological Evaluation of Pyrrolidine Derivatives. ChemMedChem, 2007, 2, 1298-1310.	3.2	8
28	Preliminary X-ray diffraction analysis of YcdB fromEscherichia coli: a novel haem-containing and Tat-secreted periplasmic protein with a potential role in iron transport. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 37-41.	0.7	10
29	Glycogen phosphorylase inhibitors: A free energy perturbation analysis of glucopyranose spirohydantoin analogues. Proteins: Structure, Function and Bioinformatics, 2005, 61, 984-998.	2.6	25
30	Kinetic and crystallographic studies of glucopyranose spirohydantoin and glucopyranosylamine analogs inhibitors of glycogen phosphorylase. Proteins: Structure, Function and Bioinformatics, 2005, 61, 966-983.	2.6	22
31	Twists and turns: a tale of two shikimate-pathway enzymes. Biochemical Society Transactions, 2003, 31, 543-547.	3.4	15
32	New Approach to Pharmacophore Mapping and QSAR Analysis Using Inductive Logic Programming. Application to Thermolysin Inhibitors and Glycogen Phosphorylase b Inhibitors. Journal of Medicinal Chemistry, 2002, 45, 399-409.	6.4	57
33	Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO Journal, 1999, 18, 4619-4632.	7.8	96
34	The Crystal Structure of theEscherichia coliMaltodextrin Phosphorylaseâ^'Acarbose Complexâ€,‡. Biochemistry, 1999, 38, 5337-5345.	2.5	31
35	Effects of commonly used cryoprotectants on glycogen phosphorylase activity and structure. Protein Science, 1999, 8, 741-749.	7.6	20
36	The structure of a glycogen phosphorylase glucopyranose spirohydantoin complex at 1.8 Ã resolution and 100 K: The role of the water structure and its contribution to binding. Protein Science, 1998, 7, 915-927.	7.6	85

KIMBERLY A WATSON

#	Article	IF	CITATIONS
37	Stereospecific Synthesis of Spirohydantoins of β-Glucopyranose: Inhibitors of Glycogen Phosphorylase. Synlett, 1997, 1997, 211-213.	1.8	31
38	A Strategy for the Incorporation of Water Molecules Present in a Ligand Binding Site into a Three-Dimensional Quantitative Structureâ ´Activity Relationship Analysis. Journal of Medicinal Chemistry, 1997, 40, 4089-4102.	6.4	97
39	The structure of glycogen phosphorylase b with an alkyldihydropyridine-dicarboxylic acid compound, a novel and potent inhibitor. Structure, 1997, 5, 1413-1425.	3.3	82
40	The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO Journal, 1997, 16, 1-14.	7.8	70
41	Glucose analogue inhibitors of glycogen phosphorylase: from crystallographic analysis to drug prediction using GRID force-field and GOLPE variable selection. Acta Crystallographica Section D: Biological Crystallography, 1995, 51, 458-472.	2.5	49
42	Nâ€acetylâ€ <i>β</i> â€Dâ€glucopyranosylamine: A potent Tâ€state inhibitor of glycogen phosphorylase. A comparison with <i>α</i> â€Dâ€glucose. Protein Science, 1995, 4, 2469-2477.	7.6	73
43	Potent inhibition of glycogen phosphorylase by a spirohydantoin of glucopyranose: First pyranose analogues of hydantocidin. Tetrahedron Letters, 1995, 36, 2145-2148.	1.4	148
44	Specific Inhibition of Glycogen Phosphorylase by a Spirodiketopiperazine at the Anomeric position of Glucopyranose. Tetrahedron Letters, 1995, 36, 8291-8294.	1.4	44
45	Specific inhibition of glycogen phosphorylase by a spirodiketopiperazine at the anomeric position of glucopyranose. Tetrahedron Letters, 1995, 36, 8291-8294.	1.4	9
46	The design of potential antidiabetic drugs: experimental investigation of a number of β-D-glucose analogue inhibitors of glycogen phosphorylase. European Journal of Drug Metabolism and Pharmacokinetics, 1994, 19, 185-192.	1.6	14
47	Design of Inhibitors of Glycogen Phosphorylase: A Study of .alpha and .betaC-Glucosides and 1-ThiobetaD-glucose Compounds. Biochemistry, 1994, 33, 5745-5758.	2.5	132
48	Comparative Molecular Field Analysis Using GRID Force-Field and GOLPE Variable Selection Methods in a Study of Inhibitors of Glycogen Phosphorylase b. Journal of Medicinal Chemistry, 1994, 37, 2589-2601.	6.4	147
49	X-Ray crystallographic analysis of 2,6-anhydro-N-methyl-D-glycero-D-ido-heptonamide: the first example of a simple glucose analogue with a skew boat structure. Journal of the Chemical Society Chemical Communications, 1993, , 654.	2.0	7
50	Crown ether complexes exhibiting unusual 1:2 macrocycle salt ratios: X-ray crystal structures of cyclohexano-15-crown-5•2LiOPh, cyclohexano-15-crown-5•2NaOPh, and 15-crown-5•2NaOPh. Canadian Journal of Chemistry, 1991, 69, 687-695.	1.1	19
51	Combined x-ray crystallographic, single-crystal EPR, and theoretical study of metal-centered radicals of the type [.eta.5C5R5Cr(CO)2L] (R = H, Me; L = CO, tertiary phosphine). Journal of the American Chemical Society, 1991, 113, 542-551.	13.7	55
52	Synthesis, NMR spectroscopy, and crystal structure of the 1:2 host: guest complex of 18-crown-6 with lithium phenoxide. Canadian Journal of Chemistry, 1990, 68, 1201-1207.	1.1	25
53	The conformation of 6-thio-β-d-fructopyranose in the crystalline state. Carbohydrate Research, 1989, 193, 1-8.	2.3	11
54	Chemistry of the organochromium(I) radical CpCr(CO)3.bul X-ray structure of a stable derivative, CpCr(CO)2(PPh3).bul Organometallics, 1986, 5, 2563-2565.	2.3	41