Enrico Barausse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717510/publications.pdf

Version: 2024-02-01

115 9,834 53 97
papers citations h-index g-index

125 125 125 4330 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Testing general relativity with present and future astrophysical observations. Classical and Quantum Gravity, 2015, 32, 243001.	1.5	943
2	Black holes, gravitational waves and fundamental physics: a roadmap. Classical and Quantum Gravity, 2019, 36, 143001.	1.5	451
3	Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Physical Review D, 2017, 95, .	1.6	344
4	Can environmental effects spoil precision gravitational-wave astrophysics?. Physical Review D, 2014, 89, .	1.6	321
5	Science with the space-based interferometer eLISA: Supermassive black hole binaries. Physical Review D, 2016, 93, .	1.6	321
6	Prospects for fundamental physics with LISA. General Relativity and Gravitation, 2020, 52, 1.	0.7	198
7	Neutron-star mergers in scalar-tensor theories of gravity. Physical Review D, 2013, 87, .	1.6	195
8	Prototype effective-one-body model for nonprecessing spinning inspiral-merger-ringdown waveforms. Physical Review D, 2012, 86, .	1.6	192
9	Black holes in Einstein-aether and Hořava-Lifshitz gravity. Physical Review D, 2011, 83, .	1.6	190
10	Gravitational wave searches for ultralight bosons with LIGO and LISA. Physical Review D, 2017, 96, .	1.6	190
11	The evolution of massive black holes and their spins in their galactic hosts. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2533-2557.	1.6	187
12	Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 002-002.	1.9	167
13	Test Bodies and Naked Singularities: Is the Self-Force the Cosmic Censor?. Physical Review Letters, 2010, 105, 261102.	2.9	165
14	CONSTRAINING THE QUADRUPOLE MOMENT OF STELLAR-MASS BLACK HOLE CANDIDATES WITH THE CONTINUUM FITTING METHOD. Astrophysical Journal, 2011, 731, 121.	1.6	165
15	Final spin from the coalescence of two black holes. Physical Review D, 2008, 78, .	1.6	162
16	Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations. Physical Review D, 2014, 89, .	1.6	161
17	Improved effective-one-body Hamiltonian for spinning black-hole binaries. Physical Review D, 2010, 81, .	1.6	155
18	Stochastic and Resolvable Gravitational Waves from Ultralight Bosons. Physical Review Letters, 2017, 119, 131101.	2.9	151

#	Article	IF	Citations
19	PREDICTING THE DIRECTION OF THE FINAL SPIN FROM THE COALESCENCE OF TWO BLACK HOLES. Astrophysical Journal, 2009, 704, L40-L44.	1.6	148
20	Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers. Physical Review Letters, 2016, 117, 101102.	2.9	148
21	THE FINAL SPIN FROM BINARY BLACK HOLES IN QUASI-CIRCULAR ORBITS. Astrophysical Journal Letters, 2016, 825, L19.	3.0	147
22	Dynamical scalarization of neutron stars in scalar-tensor gravity theories. Physical Review D, 2014, 89, .	1.6	144
23	THE COEVOLUTION OF NUCLEAR STAR CLUSTERS, MASSIVE BLACK HOLES, AND THEIR HOST GALAXIES. Astrophysical Journal, 2015, 812, 72.	1.6	140
24	Theory-Agnostic Constraints on Black-Hole Dipole Radiation with Multiband Gravitational-Wave Astrophysics. Physical Review Letters, 2016, 116, 241104.	2.9	135
25	Hamiltonian of a spinning test particle in curved spacetime. Physical Review D, 2009, 80, .	1.6	129
26	Testing modified gravity at cosmological distances with LISA standard sirens. Journal of Cosmology and Astroparticle Physics, 2019, 2019, 024-024.	1.9	129
27	The TianQin project: Current progress on science and technology. Progress of Theoretical and Experimental Physics, 2021, 2021, .	1.8	129
28	Strong Binary Pulsar Constraints on Lorentz Violation in Gravity. Physical Review Letters, 2014, 112, 161101.	2.9	128
29	Spin-Induced Black Hole Spontaneous Scalarization. Physical Review Letters, 2020, 125, 231101.	2.9	120
30	Gravitational waves from the remnants of the first stars. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 460, L74-L78.	1.2	118
31	Complete nonspinning effective-one-body metric at linear order in the mass ratio. Physical Review D, 2012, 85, .	1.6	108
32	Gravitational Self-Force Correction to the Binding Energy of Compact Binary Systems. Physical Review Letters, 2012, 108, 131103.	2.9	107
33	A no-go theorem for polytropic spheres in Palatini $\langle i \rangle f \langle i \rangle R \langle i \rangle$ gravity. Classical and Quantum Gravity, 2008, 25, 062001.	1.5	104
34	Perturbed Kerr Black Holes Can Probe Deviations from General Relativity. Physical Review Letters, 2008, 101, 099001.	2.9	96
35	Post-Newtonian evolution of massive black hole triplets in galactic nuclei $\hat{a} \in \mathbb{N}$. Implications for LISA. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4044-4060.	1.6	91
36	Extending the effective-one-body Hamiltonian of black-hole binaries to include next-to-next-to-leading spin-orbit couplings. Physical Review D, 2011, 84, .	1.6	90

3

#	Article	IF	CITATIONS
37	Effect of inhomogeneities on the luminosity distance-redshift relation: Is dark energy necessary in a perturbed universe?. Physical Review D, 2005, 71, .	1.6	89
38	Gravitational instabilities of superspinars. Physical Review D, 2010, 82, .	1.6	89
39	Unveiling the gravitational universe at $\hat{l}\frac{1}{4}$ -Hz frequencies. Experimental Astronomy, 2021, 51, 1333-1383.	1.6	88
40	Black holes in Lorentz-violating gravity theories. Classical and Quantum Gravity, 2013, 30, 244010.	1.5	85
41	Testing the cosmic censorship conjecture with point particles: The effect of radiation reaction and the self-force. Physical Review D, $2011,84,\ldots$	1.6	83
42	New horizons for fundamental physics with LISA. Living Reviews in Relativity, 2022, 25, .	8.2	82
43	Slowly rotating black holes in Hořava-Lifshitz gravity. Physical Review D, 2013, 87, .	1.6	78
44	Projected constraints on scalarization with gravitational waves from neutron star binaries. Physical Review D, 2014, 90, .	1.6	76
45	Extreme mass-ratio inspirals in the effective-one-body approach: Quasicircular, equatorial orbits around a spinning black hole. Physical Review D, 2011, 83, .	1.6	75
46	Slowly rotating black holes in Einstein- \tilde{A}^{\dagger}_{l} ther theory. Physical Review D, 2016, 93, .	1.6	70
47	Science with the TianQin observatory: Preliminary results on massive black hole binaries. Physical Review D, 2019, 100, .	1.6	64
48	Modeling multipolar gravitational-wave emission from small mass-ratio mergers. Physical Review D, 2012, 85, .	1.6	63
49	Environmental Effects for Gravitational-wave Astrophysics. Journal of Physics: Conference Series, 2015, 610, 012044.	0.3	59
50	Influence of the hydrodynamic drag from an accretion torus on extreme mass-ratio inspirals. Physical Review D, 2008, 77, .	1.6	58
51	Prospects for observing extreme-mass-ratio inspirals with LISA. Journal of Physics: Conference Series, 2017, 840, 012021.	0.3	58
52	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – I. Numerical implementation and tests. Monthly Notices of the Royal Astronomical Society, 2016, 461, 4419-4434.	1.6	54
53	Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes. Astronomy and Astrophysics, 2018, 616, A179.	2.1	54
54	Post-Newtonian evolution of massive black hole triplets in galactic nuclei – III. A robust lower limit to the nHz stochastic background of gravitational waves. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2599-2612.	1.6	52

#	Article	IF	CITATIONS
55	THE IMPRINT OF MASSIVE BLACK HOLE MERGERS ON THE CORRELATION BETWEEN NUCLEAR STAR CLUSTERS AND THEIR HOST GALAXIES. Astrophysical Journal Letters, 2015, 806, L8.	3.0	51
56	Science with the TianQin observatory: Preliminary results on testing the no-hair theorem with ringdown signals. Physical Review D, 2019, 100 , .	1.6	51
57	Monitoring the Morphology of M87* in 2009–2017 with the Event Horizon Telescope. Astrophysical Journal, 2020, 901, 67.	1.6	51
58	Gravitational waves from extreme mass ratio inspirals in nonpure Kerr spacetimes. Physical Review D, 2007, 75, .	1.6	49
59	A multimessenger study of the Milky Way's stellar disc and bulge with LISA, <i>Gaia</i> , and LSST. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5518-5533.	1.6	49
60	Effect of cosmological evolution on Solar System constraints and on the scalarization of neutron stars in massless scalar-tensor theories. Physical Review D, 2016, 94, .	1.6	48
61	Post-Newtonian evolution of massive black hole triplets in galactic nuclei $\hat{a} \in \mathbb{N}$ II. Survey of the parameter space. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3910-3926.	1.6	47
62	Massive Black Hole Merger Rates: The Effect of Kiloparsec Separation Wandering and Supernova Feedback. Astrophysical Journal, 2020, 904, 16.	1.6	47
63	Final stages of accretion onto non-Kerr compact objects. Physical Review D, 2011, 84, .	1.6	45
64	Foreground cleaning and template-free stochastic background extraction for LISA. Journal of Cosmology and Astroparticle Physics, 2020, 2020, 021-021.	1.9	44
65	No-Go Theorem for Slowly Rotating Black Holes in Hořava-Lifshitz Gravity. Physical Review Letters, 2012, 109, 181101.	2.9	43
66	Gravitation-Wave Emission in Shift-Symmetric Horndeski Theories. Physical Review Letters, 2015, 115, 211105.	2.9	43
67	The stochastic gravitational-wave background in the absence of horizons. Classical and Quantum Gravity, 2018, 35, 20LT01.	1.5	43
68	Publisher's Note: Constraints on Einstein-Æther theory and Hořava gravity from binary pulsar observations [Phys. Rev. D 89 , 084067 (2014)]. Physical Review D, 2014, 90, .	1.6	42
69	Post-Newtonian expansion for Gauss-Bonnet gravity. Physical Review D, 2007, 75, .	1.6	41
70	Science with the TianQin observatory: Preliminary result on extreme-mass-ratio inspirals. Physical Review D, 2020, 102, .	1.6	40
71	Peculiar acceleration of stellar-origin black hole binaries: Measurement and biases with LISA. Physical Review D, 2020, 101, .	1.6	39
72	EHT tests of the strong-field regime of general relativity. Classical and Quantum Gravity, 2021, 38, 21LT01.	1.5	38

#	Article	IF	Citations
73	Constraints on Hořava gravity from binary black hole observations. Physical Review D, 2019, 99, .	1.6	37
74	Detectable Environmental Effects in GW190521-like Black-Hole Binaries with LISA. Physical Review Letters, 2021, 126, 101105.	2.9	34
75	Gravitational-wave Detection and Parameter Estimation for Accreting Black-hole Binaries and Their Electromagnetic Counterpart. Astrophysical Journal, 2020, 892, 90.	1.6	33
76	Relativistic dynamical friction in a collisional fluid. Monthly Notices of the Royal Astronomical Society, 2007, 382, 826-834.	1.6	32
77	The nightmare scenario: measuring the stochastic gravitational wave background from stalling massive black hole binaries with pulsar timing arrays. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4547-4556.	1.6	32
78	Gravitational waves and kicks from the merger of unequal mass, highly compact boson stars. Physical Review D, 2022, 105, .	1.6	31
79	Post-Newtonian constraints on Lorentz-violating gravity theories with a MOND phenomenology. Physical Review D, 2015, 91, .	1.6	29
80	Bayesian metric reconstruction with gravitational wave observations. Physical Review D, 2020, 102, .	1.6	28
81	Selection bias in dynamically measured supermassive black hole samples: scaling relations and correlations between residuals in semi-analytic galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4782-4791.	1.6	27
82	No Evidence of Kinetic Screening in Simulations of Merging Binary Neutron Stars beyond General Relativity. Physical Review Letters, 2022, 128, 091103.	2.9	27
83	Tests of general relativity with stellar-mass black hole binaries observed by LISA. Physical Review D, 2020, 101, .	1.6	26
84	Kinetic screening in nonlinear stellar oscillations and gravitational collapse. Physical Review D, 2021, 104, .	1.6	26
85	Numerical investigation of plasma-driven superradiant instabilities. Classical and Quantum Gravity, 2020, 37, 175006.	1.5	25
86	Separating astrophysics and geometry in black hole images. Physical Review D, 2021, 104, .	1.6	24
87	Dynamics of Screening in Modified Gravity. Physical Review Letters, 2021, 126, 091102.	2.9	23
88	Electromagnetic outflows in a class of scalar-tensor theories: Binary neutron star coalescence. Physical Review D, 2015, 91, .	1.6	21
89	Massive Black Hole Science with eLISA. Journal of Physics: Conference Series, 2015, 610, 012001.	0.3	20
90	Post-Newtonian phase accuracy requirements for stellar black hole binaries with LISA. Physical Review D, 2019, 99, .	1.6	20

#	Article	IF	CITATIONS
91	K-dynamics: well-posed 1+1 evolutions in K-essence. Journal of Cosmology and Astroparticle Physics, 2021, 2021, 072.	1.9	20
92	Soliton boson stars, Q-balls and the causal Buchdahl bound. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 032.	1.9	19
93	UV completions, fixing the equations, and nonlinearities in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>k</mml:mi></mml:math> -essence. Physical Review D, 2022, 105, .	1.6	19
94	Landscape of massive black-hole spectroscopy with LISA and the Einstein Telescope. Physical Review D, 2022, 105 , .	1.6	19
95	New binary pulsar constraints on Einstein- \tilde{A}^{\dagger}_{l} ther theory after GW170817. Classical and Quantum Gravity, 2021, 38, 195003.	1.5	18
96	Effect of data gaps on the detectability and parameter estimation of massive black hole binaries with LISA. Physical Review D, 2021, 104, .	1.6	17
97	Circular and noncircular nearly horizon-skimming orbits in Kerr spacetimes. Physical Review D, 2007, 76, .	1.6	15
98	Well-posed Cauchy formulation for Einstein- \tilde{A}^{\dagger}_{l} ther theory. Classical and Quantum Gravity, 2019, 36, 165007.	1.5	15
99	Modeling gravitational waves from exotic compact objects. Physical Review D, 2021, 103, .	1.6	15
100	Theory-agnostic reconstruction of potential and couplings from quasinormal modes. Physical Review D, 2022, 105, .	1.6	15
101	About gravitational-wave generation by a three-body system. Classical and Quantum Gravity, 2017, 34, 215004.	1.5	13
102	Neutron star sensitivities in Hořava gravity after GW170817. Physical Review D, 2019, 100, .	1.6	12
103	Dynamical chameleon neutron stars: Stability, radial oscillations, and scalar radiation in spherical symmetry. Physical Review D, 2021, 104, .	1.6	12
104	Relation between general relativity and a class of Hořava gravity theories. Physical Review D, 2021, 103, .	1.6	11
105	Ultra-high-energy cosmic rays and neutrinos from tidal disruptions by massive black holes (Corrigendum). Astronomy and Astrophysics, 2020, 636, C3.	2.1	8
106	Discriminating between different scenarios for the formation and evolution of massive black holes with LISA. Physical Review D, 2021, 104, .	1.6	7
107	Post-Newtonian approach to black hole-fluid systems. Physical Review D, 2013, 88, .	1.6	5
108	Black holes in ultraviolet-complete Hořava gravity. Physical Review D, 2021, 103, .	1.6	5

#	Article	lF	CITATIONS
109	Divergences in gravitational-wave emission and absorption from extreme mass ratio binaries. Physical Review D, 2021, 104, .	1.6	3
110	The importance of precession in modelling the direction of the final spin from a black-hole merger. Journal of Physics: Conference Series, 2010, 228, 012050.	0.3	2
111	Black Holes in General Relativity and Beyond. Proceedings (mdpi), 2019, 17, .	0.2	2
112	Massive Black-Hole Mergers., 2021,, 1-33.		2
113	Degenerate Hořava gravity. Classical and Quantum Gravity, 2021, 38, 105007.	1.5	1
114	EMRIs in non-pure Kerr spacetimes. AIP Conference Proceedings, 2006, , .	0.3	0
115	Massive Black-Hole Mergers. , 2022, , 851-883.		O