

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7175042/publications.pdf Version: 2024-02-01

Ілнат

#	Article	IF	CITATIONS
1	A tale of two metal ions: contrasting behaviors of high oxidation states of Cu and Mn in a bicarbonate–H2O2 system. Environmental Science: Water Research and Technology, 2021, 7, 479-486.	1.2	1
2	Concerted high innergenerated-H2O2 photocatalysis and Photo-Fenton degradation of organic pollutants over SCNO@CdS. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 420, 113477.	2.0	7
3	Glutathione promoted Fenton degradation: a cocatalyst based on the –HS/–S–S– cycle with hydroxyl radicals. Environmental Science: Water Research and Technology, 2020, 6, 515-522.	1.2	9
4	Quantitative determination of redox-active carbonyls of natural dissolved organic matter. Water Research, 2020, 185, 116142.	5.3	10
5	Aqueous photochemistry of fullerol revisited: Energy transfer vs. electron transfer processes probed by Rhodamine B degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 397, 112600.	2.0	5
6	Integration of homogeneous and heterogeneous advanced oxidation processes: Confined iron dancing with cyclodextrin polymer. Chemosphere, 2020, 250, 126226.	4.2	11
7	The reactivity and pathway of Fenton reactions driven by hydroxybenzoic acids: the effect of hydroxylation. Environmental Science: Water Research and Technology, 2019, 5, 1507-1514.	1.2	5
8	Insights into aqueous reduction of Cr(VI) by Fe3O4@NOM MNPs under irradiation: The role of carbonyl structures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 578, 123593.	2.3	3
9	Cocatalyst or substrate? Competitive Fenton transformation of cysteine and salicylic acid. Environmental Science: Water Research and Technology, 2019, 5, 1046-1053.	1.2	6
10	Overlooked Role of Carbonyls of Natural Organic Matter on the Dissolution of Zinc Oxide Nanoparticles. ACS Earth and Space Chemistry, 2019, 3, 2786-2794.	1.2	3
11	Strongly prolonged hydroxyl radical production for Fenton-like reactions: The golden touch of Cu. Separation and Purification Technology, 2019, 213, 500-506.	3.9	19
12	MgO nanolayering of Cu2O semiconductors enhances photoreactivity: Superoxide radicals boost. Journal of Environmental Chemical Engineering, 2017, 5, 2648-2657.	3.3	14
13	Contribution to the reductionâ€induced fluorescence enhancement of natural organic matter: Aromatic ketones outweigh quinones. Luminescence, 2017, 32, 1528-1534.	1.5	3
14	Strongly enhanced Fenton degradation of organic pollutants by cysteine: An aliphatic amino acid accelerator outweighs hydroquinone analogues. Water Research, 2016, 105, 479-486.	5.3	177
15	Aqueous photoproduction of Au nanoparticles by natural organic matter: effect of NaBH ₄ reduction. Environmental Science: Nano, 2016, 3, 707-714.	2.2	17
16	Cavity-confined acceleration of iron cycle for the Fenton-like reaction by β-CD-benzoquinone host–guest complex under visible irradiation. Catalysis Communications, 2015, 65, 96-101.	1.6	16
17	Incorporating Research-Based Problems from the Primary Literature into a Large-Scale Organic Structure Analysis Course. Journal of Chemical Education, 2015, 92, 2176-2181.	1.1	7
18	Aqueous phototransformation of bisphenol S: the competitive radical-attack pathway to p-hydroxybenzenesulfonic acid. Water Science and Technology, 2014, 70, 540-547.	1.2	13

Jiahai

#	Article	IF	CITATIONS
19	Engaging in Curriculum Reform of Chinese Chemistry Graduate Education: An Example from a Photocatalysis—Principles and Applications Course. Journal of Chemical Education, 2014, 91, 206-210.	1.1	7
20	Reduction-induced molecular signature of humic substances: structural evidence for optical changes. RSC Advances, 2014, 4, 25880.	1.7	14
21	Optical Properties of Humic Substances and CDOM: Effects of Borohydride Reduction. Environmental Science & Technology, 2010, 44, 5395-5402.	4.6	134
22	Fluorescence anisotropy as a means to determine extracellular polysaccharide hydrolase activity in environmental samples. Analytical Biochemistry, 2008, 383, 340-342.	1.1	2