
## Christodoulos Chatzichristodoulou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717490/publications.pdf Version: 2024-02-01



Christodoulos

| #  | Article                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Current understanding of ceria surfaces for CO2 reduction in SOECs and future prospects – A review. Solid State Ionics, 2022, 375, 115833.                                                                                                                    | 2.7 | 22        |
| 2  | Reversible Hydrogen and Pd Hydride Reference Electrodes with Electrochemically Supplied<br>H <sub>2</sub> for High Temperature and Pressure Electrochemistry. Journal of the Electrochemical<br>Society, 2022, 169, 054534.                                   | 2.9 | 3         |
| 3  | Fast relaxation of stresses in solid oxide cells through reduction. Part I: Macro-stresses in the cell<br>layers. International Journal of Hydrogen Energy, 2021, 46, 1548-1559.                                                                              | 7.1 | 7         |
| 4  | Development of high-temperature electrochemical TEM and its application on solid oxide electrolysis cells. Microscopy and Microanalysis, 2021, 27, 3138-3139.                                                                                                 | 0.4 | 0         |
| 5  | Combining EIS with in Situ TEM in Characterizing Solid Oxide Cell Components. ECS Meeting Abstracts, 2021, MA2021-02, 1899-1899.                                                                                                                              | 0.0 | 0         |
| 6  | Polysulfone-polyvinylpyrrolidone blend membranes as electrolytes in alkaline water electrolysis.<br>Journal of Membrane Science, 2020, 598, 117674.                                                                                                           | 8.2 | 44        |
| 7  | (Invited) Roles of Electrochemistry in a Fully Renewable Energy Society. ECS Meeting Abstracts, 2020,<br>MA2020-01, 1444-1444.                                                                                                                                | 0.0 | 0         |
| 8  | (Invited) Electrochemistry Meets Heterogeneous Catalysis for the Conversion of CO2 and N2 to Fuels and Chemicals. ECS Meeting Abstracts, 2020, MA2020-01, 1455-1455.                                                                                          | 0.0 | 0         |
| 9  | (Invited) Advanced Alkaline Electrolysis Cells for the Production of Sustainable Fuels and Chemicals.<br>ECS Meeting Abstracts, 2020, MA2020-01, 1482-1482.                                                                                                   | 0.0 | Ο         |
| 10 | (Invited) Roles of Electrochemistry in a Fully Renewable Energy Society. ECS Meeting Abstracts, 2020,<br>MA2020-02, 2533-2533.                                                                                                                                | 0.0 | 0         |
| 11 | Effect of Fe on high performing nanostructured Ni/Gd-doped ceria electrocatalysts. Solid State<br>Ionics, 2019, 340, 115019.                                                                                                                                  | 2.7 | 10        |
| 12 | The Impact of Strong Cathodic Polarization on Ni  YSZ Microelectrodes. Journal of the Electrochemical Society, 2018, 165, F253-F263.                                                                                                                          | 2.9 | 7         |
| 13 | Numerical simulation of kinetic demixing and decomposition in a LaCoO3-Î′ oxygen membrane under an oxygen potential gradient. Journal of Membrane Science, 2018, 548, 526-539.                                                                                | 8.2 | 9         |
| 14 | A three dimensional multiphysics model of a solid oxide electrochemical cell: A tool for<br>understanding degradation. International Journal of Hydrogen Energy, 2018, 43, 11913-11931.                                                                       | 7.1 | 38        |
| 15 | Oxygen Evolution Activity and Chemical Stability of Ni and Fe Based Perovskites in Alkaline Media.<br>Journal of the Electrochemical Society, 2018, 165, F827-F835.                                                                                           | 2.9 | 15        |
| 16 | Thermoneutral Operation of Solid Oxide Electrolysis Cells in Potentiostatic Mode. ECS Transactions, 2017, 78, 3077-3088.                                                                                                                                      | 0.5 | 27        |
| 17 | Ionic/Electronic Conductivity, Thermal/Chemical Expansion and Oxygen Permeation in Pr and Gd<br>Co-Doped Ceria Pr <sub>x</sub> Gd <sub>0.1</sub> Ce <sub>0.9-x</sub> O <sub>1.95-Î</sub> . Journal of the<br>Electrochemical Society, 2017, 164, F1354-F1367. | 2.9 | 23        |
| 18 | Oxygen transport properties of tubular Ce0.9Gd0.1O1.95-La0.6Sr0.4FeO3â^'d composite asymmetric oxygen permeation membranes supported on magnesium oxide. Journal of Membrane Science, 2017, 523, 576-587.                                                     | 8.2 | 13        |

Christodoulos

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | High Temperature Alkaline Electrolysis Cells with Metal Foam Based Gas Diffusion Electrodes. Journal of the Electrochemical Society, 2016, 163, F3036-F3040.                                    | 2.9  | 19        |
| 20 | Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes. Journal of Membrane Science, 2016, 513, 85-94.                                        | 8.2  | 31        |
| 21 | Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nature Energy, 2016, 1, .                                                                          | 39.5 | 557       |
| 22 | An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells. Journal of Power Sources, 2016, 315, 339-350.                                         | 7.8  | 46        |
| 23 | Accelerated creep in solid oxide fuel cell anode supports during reduction. Journal of Power Sources, 2016, 323, 78-89.                                                                         | 7.8  | 49        |
| 24 | New Hypothesis for SOFC Ceramic Oxygen Electrode Mechanisms. ECS Transactions, 2016, 72, 93-103.                                                                                                | 0.5  | 4         |
| 25 | Understanding degradation of solid oxide electrolysis cells through modeling of electrochemical potential profiles. Electrochimica Acta, 2016, 189, 265-282.                                    | 5.2  | 58        |
| 26 | Need for In Operando Characterization of Electrochemical Interface Features. ECS Transactions, 2015, 66, 3-20.                                                                                  | 0.5  | 13        |
| 27 | Kinetics of CO/CO <sub>2</sub> and H <sub>2</sub> /H <sub>2</sub> O reactions at Ni-based and ceria-based solid-oxide-cell electrodes. Faraday Discussions, 2015, 182, 75-95.                   | 3.2  | 23        |
| 28 | Enhanced reducibility and electronic conductivity of Nb or W doped Ce0.9Gd0.1O1.95â~δ. Solid State<br>Ionics, 2015, 269, 51-56.                                                                 | 2.7  | 8         |
| 29 | Size of oxide vacancies in fluorite and perovskite structured oxides. Journal of Electroceramics, 2015, 34, 100-107.                                                                            | 2.0  | 81        |
| 30 | Equilibrium and transient conductivity for gadolium-doped ceria under large perturbations: II.<br>Modeling. Solid State Ionics, 2014, 268, 198-207.                                             | 2.7  | 22        |
| 31 | Foam Based Gas Diffusion Electrodes for Reversible Alkaline Electrolysis Cells. ECS Transactions, 2014, 64, 1029-1038.                                                                          | 0.5  | 1         |
| 32 | Cobalt and molybdenum activated electrodes in foam based alkaline electrolysis cells at 150–250°C<br>and 40Âbar. Journal of Power Sources, 2014, 255, 394-403.                                  | 7.8  | 15        |
| 33 | Electrical conductivity of titanium pyrophosphate between 100 and 400°C: effect of sintering temperature and phosphorus content. Journal of Solid State Electrochemistry, 2014, 18, 39-47.      | 2.5  | 14        |
| 34 | Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices. Annual<br>Review of Materials Research, 2014, 44, 205-239.                                          | 9.3  | 188       |
| 35 | Composite Fe – BaCe <sub>0.2</sub> Zr <sub>0.6</sub> Y <sub>0.2</sub> O <sub>2.9</sub> Anodes for<br>Proton Conductor Fuel Cells. Journal of the Electrochemical Society, 2014, 161, F833-F837. | 2.9  | 6         |
| 36 | TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation. Dalton Transactions, 2014, 43, 14949-14958.                             | 3.3  | 13        |

CHRISTODOULOS

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Defining chemical expansion: the choice of units for the stoichiometric expansion coefficient.<br>Physical Chemistry Chemical Physics, 2014, 16, 9229-9232.                                                                                                                                                                | 2.8 | 19        |
| 38 | Equilibrium and transient conductivity for gadolinium-doped ceria under large perturbations: I.<br>Experiments. Solid State Ionics, 2014, 265, 22-28.                                                                                                                                                                      | 2.7 | 12        |
| 39 | Fermi Potential across Working Solid Oxide Cells with Zirconia or Ceria Electrolytes. ECS<br>Transactions, 2014, 61, 203-214.                                                                                                                                                                                              | 0.5 | 11        |
| 40 | High temperature and pressure electrochemical test station. Review of Scientific Instruments, 2013, 84, 054101.                                                                                                                                                                                                            | 1.3 | 7         |
| 41 | CERIA AND ITS USE IN SOLID OXIDE CELLS AND OXYGEN MEMBRANES. Catalytic Science Series, 2013, , 623-782.                                                                                                                                                                                                                    | 0.0 | 11        |
| 42 | Enhanced mass diffusion phenomena in highly defective doped ceria. Acta Materialia, 2013, 61,<br>6290-6300.                                                                                                                                                                                                                | 7.9 | 67        |
| 43 | Infiltration of ionic-, electronic- and mixed-conducting nano particles into<br>La0.75Sr0.25MnO3–Y0.16Zr0.84O2 cathodes – A comparative study of performance enhancement and<br>stability atÂdifferent temperatures. Journal of Power Sources, 2013, 228, 170-177.                                                         | 7.8 | 46        |
| 44 | Alkaline electrolysis cell at high temperature and pressure of 250°C and 42Âbar. Journal of Power<br>Sources, 2013, 229, 22-31.                                                                                                                                                                                            | 7.8 | 59        |
| 45 | In situ X-ray and neutron diffraction of the Ruddlesden–Popper compounds<br>(RE2â^xSrx)0.98(Fe0.8Co0.2)1â^'yMgyO4â~δ (RE=La, Pr): Structure and CO2 stability. Journal of Solid State<br>Chemistry, 2013, 201, 164-171.                                                                                                    | 2.9 | 6         |
| 46 | Defect chemistry, thermomechanical and transport properties of<br>(RE2â^'xSrx)0.98(Fe0.8Co0.2)1â^'yMgyO4â^'δ (RE = La, Pr). Solid State Ionics, 2013, 232, 68-79.                                                                                                                                                          | 2.7 | 9         |
| 47 | Phase Composition and Long-Term Conductivity of Acceptor Doped<br>Ce(PO <sub>3</sub> ) <sub>4</sub> and CeP <sub>2</sub> O <sub>7</sub> with Variable P/Metal Ratio and<br>of CeP <sub>2</sub> O <sub>7</sub> -KH <sub>2</sub> PO <sub>4</sub> Composite. Journal of the<br>Electrochemical Society, 2013, 160, F798-F805. | 2.9 | 13        |
| 48 | (Invited) Electronic and Ionic Transport in Ce0.8PrxTb0.2-xO2-Â and Evaluation of Performance as Oxygen Permeation Membranes. ECS Transactions, 2012, 45, 45-62.                                                                                                                                                           | 0.5 | 1         |
| 49 | Electronic and Ionic Transport in Ce0.8PrxTb0.2â^'xO2â^'Î′and Evaluation of Performance as Oxygen<br>Permeation Membranes. Journal of the Electrochemical Society, 2012, 159, E162-E170.                                                                                                                                   | 2.9 | 5         |
| 50 | Electrical conductivity measurements of aqueous and immobilized potassium hydroxide. International<br>Journal of Hydrogen Energy, 2012, 37, 16505-16514.                                                                                                                                                                   | 7.1 | 54        |
| 51 | Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes.<br>Solid State Ionics, 2012, 224, 21-31.                                                                                                                                                                                | 2.7 | 38        |
| 52 | Determination of redox-active centers in praseodymium doped ceria by in situ-XANES spectroscopy.<br>Chemical Physics Letters, 2012, 537, 80-83.                                                                                                                                                                            | 2.6 | 3         |
| 53 | Electronic conductivity of Ce0.9Gd0.1O1.95â~δ and Ce0.8Pr0.2O2â^δ: Hebb–Wagner polarisation in the case of redox active dopants and interference. Physical Chemistry Chemical Physics, 2011, 13, 21558.                                                                                                                    | 2.8 | 29        |
| 54 | Evaluation of thin film ceria membranes for syngas membrane reactors—Preparation,<br>characterization and testing. Journal of Membrane Science, 2011, 378, 51-60.                                                                                                                                                          | 8.2 | 48        |

Christodoulos

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Oxygen Permeation in Thin, Dense Ce <sub>0.9</sub> Gd <sub>0.1</sub> O <sub>1.95-δ</sub> Membranes II.<br>Experimental Determination. Journal of the Electrochemical Society, 2011, 158, F73-F83.                                           | 2.9 | 26        |
| 56 | Oxygen Permeation in Thin, Dense Ce0.9Gd0.1O1.95-δ Membranes I. Model Study. Journal of the<br>Electrochemical Society, 2011, 158, F61.                                                                                                     | 2.9 | 21        |
| 57 | Densification and grain growth during early-stage sintering of Ce0.9Gd0.1O1.95â^´î´ in a reducing atmosphere. Acta Materialia, 2010, 58, 3860-3866.                                                                                         | 7.9 | 38        |
| 58 | Phase Formation in the System ZrO <sub>2</sub> –LaO <sub>1.5</sub> –MnO <i><sub>x</sub></i> in Air<br>and <i>P</i> â^1⁄41 Pa After 500 h of Annealing at 1200° and 1400°C. Journal of the American Ceramic Society,<br>2010, 93, 2884-2890. | 3.8 | 2         |
| 59 | Experimental determination of the Onsager coefficients of transport for Ce0.8Pr0.2O2â^î^. Physical Chemistry Chemical Physics, 2010, 12, 9637.                                                                                              | 2.8 | 30        |
| 60 | Defect Chemistry and Thermomechanical Properties of Ce[sub 0.8]Pr[sub x]Tb[sub 0.2â^'x]O[sub 2â^'Î].<br>Journal of the Electrochemical Society, 2010, 157, B299.                                                                            | 2.9 | 49        |
| 61 | Oxygen Nonstoichiometry and Defect Chemistry Modeling of Ce[sub 0.8]Pr[sub 0.2]O[sub 2â~Î]. Journal of the Electrochemical Society, 2010, 157, B481.                                                                                        | 2.9 | 41        |
| 62 | Oxygen Nonstoichiometry and Defect Chemistry Modelling of Ce0.8PrxTb0.2-xO2-δ. ECS Transactions, 2008, 13, 347-359.                                                                                                                         | 0.5 | 7         |