List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174684/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The steroid and thyroid hormone receptor superfamily. Science, 1988, 240, 889-895.	6.0	7,368
2	The nuclear receptor superfamily: The second decade. Cell, 1995, 83, 835-839.	13.5	6,478
3	The RXR heterodimers and orphan receptors. Cell, 1995, 83, 841-850.	13.5	3,025
4	15-Deoxy-Δ12,14-Prostaglandin J2 is a ligand for the adipocyte determination factor PPARÎ ³ . Cell, 1995, 83, 803-812.	13.5	2,811
5	Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature, 1983, 304, 129-135.	13.7	2,288
6	Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature, 1982, 298, 240-244.	13.7	2,120
7	A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews Cancer, 2020, 20, 174-186.	12.8	2,012
8	Hypolipidemic drugs, polyunsaturated fatty acids, and eicosanoids are ligands for peroxisome proliferator-activated receptors and Â. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 4312-4317.	3.3	1,987
9	Identification of a receptor for the morphogen retinoic acid. Nature, 1987, 330, 624-629.	13.7	1,983
10	Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science, 1987, 237, 268-275.	6.0	1,863
11	Nuclear Receptors and Lipid Physiology: Opening the X-Files. Science, 2001, 294, 1866-1870.	6.0	1,848
12	A transcriptional co-repressor that interacts with nuclear hormone receptors. Nature, 1995, 377, 454-457.	13.7	1,845
13	Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature, 1985, 318, 635-641.	13.7	1,792
14	PPARÎ ³ Is Required for Placental, Cardiac, and Adipose Tissue Development. Molecular Cell, 1999, 4, 585-595.	4.5	1,780
15	Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell, 1991, 65, 1255-1266.	13.5	1,738
16	Oxidized LDL Regulates Macrophage Gene Expression through Ligand Activation of PPARÎ ³ . Cell, 1998, 93, 229-240.	13.5	1,726
17	9-cis retinoic acid is a high affinity ligand for the retinoid X receptor. Cell, 1992, 68, 397-406.	13.5	1,713
18	PPARÎ ³ Promotes Monocyte/Macrophage Differentiation and Uptake of Oxidized LDL. Cell, 1998, 93, 241-252.	13.5	1,689

#	Article	IF	CITATIONS
19	Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature, 1992, 358, 771-774.	13.7	1,678
20	The c-erb-A gene encodes a thyroid hormone receptor. Nature, 1986, 324, 641-646.	13.7	1,547
21	PPARÎ ³ signaling and metabolism: the good, the bad and the future. Nature Medicine, 2013, 19, 557-566.	15.2	1,526
22	Nuclear receptor that identifies a novel retinoic acid response pathway. Nature, 1990, 345, 224-229.	13.7	1,492
23	Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature, 1992, 355, 446-449.	13.7	1,445
24	Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471, 68-73.	13.7	1,442
25	PPARs and the complex journey to obesity. Nature Medicine, 2004, 10, 355-361.	15.2	1,427
26	Nuclear Receptor Coactivator ACTR Is a Novel Histone Acetyltransferase and Forms a Multimeric Activation Complex with P/CAF and CBP/p300. Cell, 1997, 90, 569-580.	13.5	1,400
27	Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARα with a novel putative transcription factor, PML. Cell, 1991, 66, 663-674.	13.5	1,393
28	Differential expression and activation of a family of murine peroxisome proliferator-activated receptors Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 7355-7359.	3.3	1,323
29	Dramatic growth of mice that develop from eggs microinjected with metallothionein–growth hormone fusion genes. Nature, 1982, 300, 611-615.	13.7	1,275
30	Functional antagonism between oncoprotein c-Jun and the glucocorticoid receptor. Cell, 1990, 62, 1217-1226.	13.5	1,260
31	A PPARÎ ³ -LXR-ABCA1 Pathway in Macrophages Is Involved in Cholesterol Efflux and Atherogenesis. Molecular Cell, 2001, 7, 161-171.	4.5	1,240
32	Peroxisome-Proliferator-Activated Receptor δActivates Fat Metabolism to Prevent Obesity. Cell, 2003, 113, 159-170.	13.5	1,221
33	Nuclear Receptor Repression Mediated by a Complex Containing SMRT, mSin3A, and Histone Deacetylase. Cell, 1997, 89, 373-380.	13.5	1,206
34	Characterization of three RXR genes that mediate the action of 9-cis retinoic acid Genes and Development, 1992, 6, 329-344.	2.7	1,101
35	AMPK and PPARδAgonists Are Exercise Mimetics. Cell, 2008, 134, 405-415.	13.5	1,086
36	Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature, 1998, 391, 811-814.	13.7	1,063

#	Article	IF	CITATIONS
37	Identification of a nuclear receptor that is activated by farnesol metabolites. Cell, 1995, 81, 687-693.	13.5	1,060
38	Vitamin D Receptor As an Intestinal Bile Acid Sensor. Science, 2002, 296, 1313-1316.	6.0	1,053
39	PPAR-Î ³ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nature Medicine, 2001, 7, 48-52.	15.2	1,014
40	LXR, a nuclear receptor that defines a distinct retinoid response pathway Genes and Development, 1995, 9, 1033-1045.	2.7	954
41	Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell, 1989, 57, 1139-1146.	13.5	943
42	Regulation of Muscle Fiber Type and Running Endurance by PPARδ. PLoS Biology, 2004, 2, e294.	2.6	932
43	Nuclear Receptors, RXR, and the Big Bang. Cell, 2014, 157, 255-266.	13.5	927
44	Functional domains of the human glucocorticoid receptor. Cell, 1986, 46, 645-652.	13.5	910
45	Role of CBP/P300 in nuclear receptor signalling. Nature, 1996, 383, 99-103.	13.7	899
46	Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature, 1993, 366, 476-479.	13.7	888
47	Anatomical Profiling of Nuclear Receptor Expression RevealsÂa Hierarchical Transcriptional Network. Cell, 2006, 126, 789-799.	13.5	878
48	Adipose-specific peroxisome proliferator-activated receptor knockout causes insulin resistance in fat and liver but not in muscle. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 15712-15717.	3.3	877
49	Zinc fingers: Gilt by association. Cell, 1988, 52, 1-3.	13.5	876
50	Vitamin D Receptor-Mediated Stromal Reprogramming Suppresses Pancreatitis and Enhances Pancreatic Cancer Therapy. Cell, 2014, 159, 80-93.	13.5	871
51	Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β. Nature, 2012, 485, 123-127.	13.7	867
52	Nuclear Receptor Expression Links the Circadian Clock to Metabolism. Cell, 2006, 126, 801-810.	13.5	852
53	Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 2016, 536, 479-483.	13.7	843
54	Ecdysone-inducible gene expression in mammalian cells and transgenic mice Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 3346-3351.	3.3	832

#	Article	IF	CITATIONS
55	A novel macromolecular structure is a target of the promyelocyte-retinoic acid receptor oncoprotein. Cell, 1994, 76, 333-343.	13.5	805
56	SXR, a novel steroid and xenobioticsensing nuclear receptor. Genes and Development, 1998, 12, 3195-3205.	2.7	805
57	AMPK Regulates the Circadian Clock by Cryptochrome Phosphorylation and Degradation. Science, 2009, 326, 437-440.	6.0	794
58	Identification of a new class of steroid hormone receptors. Nature, 1988, 331, 91-94.	13.7	792
59	Minireview: Lipid Metabolism, Metabolic Diseases, and Peroxisome Proliferator-Activated Receptors. Endocrinology, 2003, 144, 2201-2207.	1.4	786
60	Terminal Differentiation of Human Breast Cancer through PPARÎ ³ . Molecular Cell, 1998, 1, 465-470.	4.5	779
61	An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3375-3380.	3.3	718
62	Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell, 1992, 71, 63-72.	13.5	698
63	Multiple and cooperative trans-activation domains of the human glucocorticoid receptor. Cell, 1988, 55, 899-906.	13.5	696
64	A direct repeat in the cellular retinol-binding protein type II gene confers differential regulation by RXR and RAR. Cell, 1991, 66, 555-561.	13.5	676
65	Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature, 2000, 406, 435-439.	13.7	637
66	Regulation of Hormone-Induced Histone Hyperacetylation and Gene Activation via Acetylation of an Acetylase. Cell, 1999, 98, 675-686.	13.5	626
67	Protein encoded by v-erbA functions as a thyroid-hormone receptor antagonist. Nature, 1989, 339, 593-597.	13.7	625
68	Unique response pathways are established by allosteric interactions among nuclear hormone receptors. Cell, 1995, 81, 541-550.	13.5	612
69	A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nature Medicine, 2012, 18, 1350-1358.	15.2	612
70	Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor and the retinoid X receptor. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 237-241.	3.3	608
71	Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science, 1985, 229, 1094-1097.	6.0	604
72	Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature, 1988, 336, 262-265.	13.7	598

#	Article	IF	CITATIONS
73	RXR alpha mutant mice establish a genetic basis for vitamin A signaling in heart morphogenesis Genes and Development, 1994, 8, 1007-1018.	2.7	585
74	Gonadal and extragonadal expression of inhibin alpha, beta A, and beta B subunits in various tissues predicts diverse functions Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 247-251.	3.3	562
75	Intestinal FXR agonism promotes adipose tissue browning and reduces obesity and insulin resistance. Nature Medicine, 2015, 21, 159-165.	15.2	562
76	Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature, 1995, 375, 203-211.	13.7	561
77	The neuronal mineralocorticoid eeceptor as a mediator of glucocorticoid response. Neuron, 1988, 1, 887-900.	3.8	557
78	Activators of the nuclear receptor PPARÎ ³ enhance colon polyp formation. Nature Medicine, 1998, 4, 1058-1061.	15.2	556
79	PPARÂ: a dagger in the heart of the metabolic syndrome. Journal of Clinical Investigation, 2006, 116, 590-597.	3.9	554
80	Effects of peroxisome proliferator-activated receptor on placentation, adiposity, and colorectal cancer. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 303-308.	3.3	548
81	Retinoic acid is a negative regulator of AP-1-responsive genes Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 6092-6096.	3.3	544
82	Transcriptional Repression of Atherogenic Inflammation: Modulation by PPARÂ. Science, 2003, 302, 453-457.	6.0	543
83	Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell, 1990, 61, 497-504.	13.5	534
84	Colocalization of DNA-binding and transcriptional activation functions in the human glucocorticoid receptor. Cell, 1987, 49, 39-46.	13.5	531
85	Complex Transcriptional Units: Diversity in Gene Expression by Alternative RNA Processing. Annual Review of Biochemistry, 1986, 55, 1091-1117.	5.0	519
86	A histone deacetylase corepressor complex regulates the Notch signal transduction pathway. Genes and Development, 1998, 12, 2269-2277.	2.7	514
87	A Vitamin D Receptor/SMAD Genomic Circuit Gates Hepatic Fibrotic Response. Cell, 2013, 153, 601-613.	13.5	513
88	Phosphoinositide signalling links O-GlcNAc transferase to insulin resistance. Nature, 2008, 451, 964-969.	13.7	508
89	PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nature Medicine, 2004, 10, 530-534.	15.2	499
90	Pitx2 determines left–right asymmetry of internal organs in vertebrates. Nature, 1998, 394, 545-551.	13.7	492

#	Article	IF	CITATIONS
91	Characterization of an autoregulated response element in the mouse retinoic acid receptor type beta gene Proceedings of the National Academy of Sciences of the United States of America, 1990, 87, 5392-5396.	3.3	491
92	Class IIa Histone Deacetylases Are Hormone-Activated Regulators of FOXO and Mammalian Glucose Homeostasis. Cell, 2011, 145, 607-621.	13.5	486
93	Cryptochromes mediate rhythmic repression of the glucocorticoid receptor. Nature, 2011, 480, 552-556.	13.7	481
94	Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature, 2013, 498, 511-515.	13.7	480
95	PPAR-Î ³ regulates osteoclastogenesis in mice. Nature Medicine, 2007, 13, 1496-1503.	15.2	479
96	A role for adult TLX-positive neural stem cells in learning and behaviour. Nature, 2008, 451, 1004-1007.	13.7	469
97	Androstane metabolites bind to and deactivate the nuclear receptor CAR-Î ² . Nature, 1998, 395, 612-615.	13.7	462
98	Muscle-specific Pparg deletion causes insulin resistance. Nature Medicine, 2003, 9, 1491-1497.	15.2	454
99	lsoform-specific amino-terminal domains dictate DNA-binding properties of ROR alpha, a novel family of orphan hormone nuclear receptors Genes and Development, 1994, 8, 538-553.	2.7	452
100	The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 2012, 22, 168-177.	5.7	452
101	International Union of Pharmacology. LXIII. Retinoid X Receptors. Pharmacological Reviews, 2006, 58, 760-772.	7.1	451
102	PPARÂ regulates glucose metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3444-3449.	3.3	451
103	Reciprocal activation of Xenobiotic response genes by nuclear receptors SXR/PXR and CAR. Genes and Development, 2000, 14, 3014-3023.	2.7	450
104	Coincidence of the promoter and capped 5′ terminus of RNA from the adenovirus 2 major late transcription unit. Cell, 1978, 15, 1463-1475.	13.5	442
105	Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science, 1987, 237, 1610-1614.	6.0	435
106	Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature, 2002, 415, 549-553.	13.7	423
107	Differential activation of adipogenesis by multiple PPAR isoforms Genes and Development, 1996, 10, 974-984.	2.7	420
108	Cardiomyocyte-restricted peroxisome proliferator-activated receptor-î´ deletion perturbs myocardial fatty acid oxidation and leads to cardiomyopathy. Nature Medicine, 2004, 10, 1245-1250.	15.2	420

#	Article	IF	CITATIONS
109	Stimulation of noradrenergic sympathetic outflow by calcitonin gene-related peptide. Nature, 1983, 305, 534-536.	13.7	401
110	Relationship between the product of the Drosophila ultraspiracle locus and the vertebrate retinoid X receptor. Nature, 1990, 347, 298-301.	13.7	400
111	Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 1448-1452.	3.3	396
112	Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes and Development, 1999, 13, 2490-2501.	2.7	396
113	Inflammation-induced IgA+ cells dismantle anti-liver cancer immunity. Nature, 2017, 551, 340-345.	13.7	396
114	Domain structure of human glucocorticoid receptor and its relationship to the v-erb-A oncogene product. Nature, 1985, 318, 670-672.	13.7	386
115	Determinants for selective RAR and TR recognition of direct repeat HREs Genes and Development, 1993, 7, 1411-1422.	2.7	386
116	Phosphorylation of CREB at Ser-133 Induces Complex Formation with CREB-Binding Protein via a Direct Mechanism. Molecular and Cellular Biology, 1996, 16, 694-703.	1.1	378
117	Genome-wide Orchestration of Cardiac Functions by the Orphan Nuclear Receptors ERRα and γ. Cell Metabolism, 2007, 5, 345-356.	7.2	373
118	A c-erb-A binding site in rat growth hormone gene mediates trans-activation by thyroid hormone. Nature, 1987, 329, 738-741.	13.7	370
119	Improved insulin-sensitivity in mice heterozygous for PPAR-Î ³ deficiency. Journal of Clinical Investigation, 2000, 105, 287-292.	3.9	369
120	A Transcriptional Switch Mediated by Cofactor Methylation. Science, 2001, 294, 2507-2511.	6.0	369
121	International Union of Pharmacology. LX. Retinoic Acid Receptors. Pharmacological Reviews, 2006, 58, 712-725.	7.1	369
122	Expression and function of orphan nuclear receptor TLX in adult neural stem cells. Nature, 2004, 427, 78-83.	13.7	368
123	Mechanism of corepressor binding and release from nuclear hormone receptors. Genes and Development, 1999, 13, 3209-3216.	2.7	367
124	An inhibitor of the protein kinases TBK1 and IKK-É [,] improves obesity-related metabolic dysfunctions in mice. Nature Medicine, 2013, 19, 313-321.	15.2	364
125	Isolation of a novel histone deacetylase reveals that class I and class II deacetylases promote SMRT-mediated repression. Genes and Development, 2000, 14, 55-66.	2.7	360
126	A Chemical, Genetic, and Structural Analysis of the Nuclear Bile Acid Receptor FXR. Molecular Cell, 2003, 11, 1079-1092.	4.5	359

#	Article	IF	CITATIONS
127	STAT6 Transcription Factor Is a Facilitator of the Nuclear Receptor PPARÎ ³ -Regulated Gene Expression in Macrophages and Dendritic Cells. Immunity, 2010, 33, 699-712.	6.6	352
128	The histone acetylase PCAF is a nuclear receptor coactivator. Genes and Development, 1998, 12, 1638-1651.	2.7	350
129	Control of steroid, heme, and carcinogen metabolism by nuclear pregnane X receptor and constitutive androstane receptor. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4150-4155.	3.3	347
130	Production of mRNA in chinese hamster cells: Relationship of the rate of synthesis to the cytoplasmic concentration of nine specific mRNA sequences. Cell, 1979, 17, 1025-1035.	13.5	339
131	Protein kinase C phosphorylation at Thr 654 of the unoccupied ECF receptor and ECF binding regulate functional receptor loss by independent mechanisms. Cell, 1986, 44, 839-848.	13.5	329
132	Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein. Proceedings of the United States of America, 1997, 94, 10762-10767.	3.3	325
133	Transgenic mice with inducible dwarfism. Nature, 1989, 339, 538-541.	13.7	323
134	A Viral Mechanism for Inhibition of p300 and PCAF Acetyltransferase Activity. Cell, 1999, 96, 393-403.	13.5	323
135	The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. ELife, 2012, 1, e00065.	2.8	322
136	A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice. Nature Medicine, 2014, 20, 942-947.	15.2	317
137	Independent effects of growth hormone releasing factor on growth hormone release and gene transcription. Nature, 1985, 314, 279-281.	13.7	316
138	Global chemical effects of the microbiome include new bile-acid conjugations. Nature, 2020, 579, 123-129.	13.7	316
139	Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature, 1983, 306, 84-85.	13.7	315
140	An Essential Role for Retinoid Receptors RARÎ ² and RXRÎ ³ In Long-Term Potentiation and Depression. Neuron, 1998, 21, 1353-1361.	3.8	305
141	A Novel Pregnane X Receptor-mediated and Sterol Regulatory Element-binding Protein-independent Lipogenic Pathway. Journal of Biological Chemistry, 2006, 281, 15013-15020.	1.6	304
142	Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure Genes and Development, 1996, 10, 196-207.	2.7	300
143	Structure of the retinoid X receptor alpha DNA binding domain: a helix required for homodimeric DNA binding. Science, 1993, 260, 1117-1121.	6.0	299
144	FXR Regulates Intestinal Cancer Stem Cell Proliferation. Cell, 2019, 176, 1098-1112.e18.	13.5	291

RONALD M EVANS

#	Article	IF	CITATIONS
145	Sharp, an inducible cofactor that integrates nuclear receptor repression and activation. Genes and Development, 2001, 15, 1140-1151.	2.7	290
146	The peroxisome proliferator-activated receptor Â, an integrator of transcriptional repression and nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 2613-2618.	3.3	290
147	PPARÂ is a very low-density lipoprotein sensor in macrophages. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 1268-1273.	3.3	288
148	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	13.7	287
149	Identification of human glucocorticoid receptor complementary DNA clones by epitope selection. Science, 1985, 228, 740-742.	6.0	286
150	TRB3 Links the E3 Ubiquitin Ligase COP1 to Lipid Metabolism. Science, 2006, 312, 1763-1766.	6.0	286
151	Role for Peroxisome Proliferator-Activated Receptor α in Oxidized Phospholipid–Induced Synthesis of Monocyte Chemotactic Protein-1 and Interleukin-8 by Endothelial Cells. Circulation Research, 2000, 87, 516-521.	2.0	284
152	Glucocorticoid and thyroid hormones transcriptionally regulate growth hormone gene expression Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7659-7663.	3.3	279
153	Orphan nuclear receptors—new ligands and new possibilities: Figure 1 Genes and Development, 1998, 12, 3149-3155.	2.7	274
154	ERRÎ ³ Directs and Maintains the Transition toÂOxidative Metabolism in the Postnatal Heart. Cell Metabolism, 2007, 6, 13-24.	7.2	274
155	Orphan nuclear receptor TLX activates Wnt \hat{l}^2 -catenin signalling to stimulate neural stem cell proliferation and self-renewal. Nature Cell Biology, 2010, 12, 31-40.	4.6	273
156	Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR). Proceedings of the United States of America, 2002, 99, 13801-13806.	3.3	263
157	Depletion of fat-resident Treg cells prevents age-associated insulin resistance. Nature, 2015, 528, 137-141.	13.7	261
158	The orphan nuclear receptor LXRÂ is positively and negatively regulated by distinct products of mevalonate metabolism. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 10588-10593.	3.3	260
159	Uptake of oxidized lipids by the scavenger receptor CD36 promotes lipid peroxidation and dysfunction in CD8+ TÂcells in tumors. Immunity, 2021, 54, 1561-1577.e7.	6.6	260
160	Association of CBP/p300 Acetylase and Thymine DNA Glycosylase Links DNA Repair and Transcription. Molecular Cell, 2002, 9, 265-277.	4.5	259
161	Expression of human growth hormone-releasing factor in transgenic mice results in increased somatic growth. Nature, 1985, 315, 413-416.	13.7	256
162	Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis. Journal of Cell Biology, 2017, 216, 149-165.	2.3	250

#	Article	IF	CITATIONS
163	Multiple left-right asymmetry defects in Shh-/- mutant mice unveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 11376-11381.	3.3	248
164	Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in Nonalcoholic Steatohepatitis. Immunity, 2020, 52, 1057-1074.e7.	6.6	248
165	Nuclear receptors: Decoding metabolic disease. FEBS Letters, 2008, 582, 2-9.	1.3	243
166	Reverse transcription polymerase chain reaction for the rearranged retinoic acid receptor alpha clarifies diagnosis and detects minimal residual disease in acute promyelocytic leukemia Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2694-2698.	3.3	242
167	Human Daxx regulates Fas-induced apoptosis from nuclear PML oncogenic domains (PODs). EMBO Journal, 1999, 18, 6037-6049.	3.5	240
168	A PPARγ–FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nature, 2012, 485, 391-394.	13.7	240
169	The initiation sites for RNA transcription in Ad2 DNA. Cell, 1977, 12, 733-740.	13.5	239
170	Targeting of an inducible toxic phenotype in animal cells Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7572-7576.	3.3	238
171	PGC-1beta controls mitochondrial metabolism to modulate circadian activity, adaptive thermogenesis, and hepatic steatosis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 5223-5228.	3.3	238
172	A Novel Constitutive Androstane Receptor-Mediated and CYP3A-Independent Pathway of Bile Acid Detoxification. Molecular Pharmacology, 2004, 65, 292-300.	1.0	237
173	Regulation of MEF2 by Histone Deacetylase 4- and SIRT1 Deacetylase-Mediated Lysine Modifications. Molecular and Cellular Biology, 2005, 25, 8456-8464.	1.1	235
174	The Nuclear Receptor Superfamily: A Rosetta Stone for Physiology. Molecular Endocrinology, 2005, 19, 1429-1438.	3.7	234
175	Insights into Negative Regulation by the Glucocorticoid Receptor from Genome-wide Profiling of Inflammatory Cistromes. Molecular Cell, 2013, 49, 158-171.	4.5	233
176	PPARÎ ³ activation in adipocytes is sufficient for systemic insulin sensitization. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22504-22509.	3.3	231
177	Localization of nascent RNA and CREB binding protein with the PML-containing nuclear body. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 4991-4996.	3.3	229
178	NCoR1 Is a Conserved Physiological Modulator of Muscle Mass and Oxidative Function. Cell, 2011, 147, 827-839.	13.5	228
179	Splice commitment dictates neuron-specific alternative RNA processing in calcitonin/CGRP gene expression. Cell, 1987, 48, 517-524.	13.5	227
180	Vitamin A deprivation results in reversible loss of hippocampal long-term synaptic plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11714-11719.	3.3	227

#	Article	IF	CITATIONS
181	Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3902-3907.	3.3	226
182	Inhibin A-subunit cDNAs from porcine ovary and human placenta Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5849-5853.	3.3	225
183	Bcl-6 and NF-κB cistromes mediate opposing regulation of the innate immune response. Genes and Development, 2010, 24, 2760-2765.	2.7	224
184	Acquisition of Oncogenic Potential by RAR Chimeras in Acute Promyelocytic Leukemia through Formation of Homodimers. Molecular Cell, 2000, 5, 821-830.	4.5	223
185	The Spt6 SH2 domain binds Ser2-P RNAPII to direct Iws1-dependent mRNA splicing and export. Genes and Development, 2007, 21, 160-174.	2.7	221
186	A Nuclear Receptor Atlas: Macrophage Activation. Molecular Endocrinology, 2005, 19, 2466-2477.	3.7	220
187	Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15282-15287.	3.3	220
188	Calcitonin/calcitonin gene-related peptide transcription unit: tissue-specific expression involves selective use of alternative polyadenylation sites Molecular and Cellular Biology, 1984, 4, 2151-2160.	1.1	218
189	A gut microbiome signature for cirrhosis due to nonalcoholic fatty liver disease. Nature Communications, 2019, 10, 1406.	5.8	218
190	SMRT isoforms mediate repression and anti-repression of nuclear receptor heterodimers Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7567-7571.	3.3	218
191	Dramatic Pituitary Hyperplasia in Transgenic Mice Expressing a Human Growth Hormone-Releasing Factor Gene. Molecular Endocrinology, 1988, 2, 606-612.	3.7	216
192	The LAZ3(BCL-6) oncoprotein recruits a SMRT/mSIN3A/histone deacetylase containing complex to mediate transcriptional repression. Nucleic Acids Research, 1998, 26, 4645-4651.	6.5	216
193	Cytoplasmic Recruitment of INI1 and PML on Incoming HIV Preintegration Complexes. Molecular Cell, 2001, 7, 1245-1254.	4.5	216
194	PGC1β Mediates PPARγ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metabolism, 2010, 11, 503-516.	7.2	216
195	Interactions between Hepatic Mrp4 and Sult2a as Revealed by the Constitutive Androstane Receptor and Mrp4 Knockout Mice. Journal of Biological Chemistry, 2004, 279, 22250-22257.	1.6	211
196	The Constitutive Androstane Receptor and Pregnane X Receptor Function Coordinately to Prevent Bile Acid-induced Hepatotoxicity. Journal of Biological Chemistry, 2004, 279, 49517-49522.	1.6	211
197	A Nuclear Receptor Atlas: 3T3-L1 Adipogenesis. Molecular Endocrinology, 2005, 19, 2437-2450.	3.7	211
198	Epidermal growth factor rapidly stimulates prolactin gene transcription. Nature, 1982, 300, 192-194.	13.7	209

#	Article	IF	CITATIONS
199	The Peroxisome Proliferator-activated Receptors: Ligands and Activators. Annals of the New York Academy of Sciences, 1996, 804, 266-275.	1.8	209
200	A Stromal Lysolipid–Autotaxin Signaling Axis Promotes Pancreatic Tumor Progression. Cancer Discovery, 2019, 9, 617-627.	7.7	209
201	Nuclear receptors constitutive androstane receptor and pregnane X receptor ameliorate cholestatic liver injury. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2063-2068.	3.3	208
202	PARP-1 Determines Specificity in a Retinoid Signaling Pathway via Direct Modulation of Mediator. Molecular Cell, 2005, 18, 83-96.	4.5	207
203	Genetic Profiling Defines the Xenobiotic Gene Network Controlled by the Nuclear Receptor Pregnane X Receptor. Molecular Endocrinology, 2003, 17, 1268-1282.	3.7	203
204	Endocrinization of FGF1 produces a neomorphic and potent insulin sensitizer. Nature, 2014, 513, 436-439.	13.7	201
205	Lymphoma Regression Induced by Ganciclovir in Mice Bearing a Herpes Thymidine Kinase Transgene. Human Gene Therapy, 1990, 1, 125-134.	1.4	199
206	Orphan Nuclear Receptors: The Exotics of Xenobiotics. Journal of Biological Chemistry, 2001, 276, 37739-37742.	1.6	198
207	SMRTER, a Drosophila Nuclear Receptor Coregulator, Reveals that EcR-Mediated Repression Is Critical for Development. Molecular Cell, 1999, 4, 175-186.	4.5	195
208	Nuclear receptor ERRα and coactivator PGC-1β are effectors of IFN-γ-induced host defense. Genes and Development, 2007, 21, 1909-1920.	2.7	194
209	Immune-evasive human islet-like organoids ameliorate diabetes. Nature, 2020, 586, 606-611.	13.7	192
210	Normal development and growth of mice carrying a targeted disruption of the alpha 1 retinoic acid receptor gene Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 1590-1594.	3.3	191
211	PPARδ-mediated antiinflammatory mechanisms inhibit angiotensin II-accelerated atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4277-4282.	3.3	191
212	A molecular framework for the actions of glucocorticoid hormones in the nervous system. Neuron, 1989, 2, 1105-1112.	3.8	190
213	PPARs and ERRs: molecular mediators of mitochondrial metabolism. Current Opinion in Cell Biology, 2015, 33, 49-54.	2.6	190
214	Modulation of the intestinal bile acid/farnesoid X receptor/fibroblast growth factor 15 axis improves alcoholic liver disease in mice. Hepatology, 2018, 67, 2150-2166.	3.6	189
215	Functional inhibition of retinoic acid response by dominant negative retinoic acid receptor mutants Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 2989-2993. 	3.3	188
216	The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 17200-17205.	3.3	188

#	Article	IF	CITATIONS
217	Discrete cis-active genomic sequences dictate the pituitary cell type-specific expression of rat prolactin and growth hormone genes. Nature, 1986, 322, 557-562.	13.7	187
218	PPARδ regulates multiple proinflammatory pathways to suppress atherosclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 4271-4276.	3.3	181
219	A Single Domain of the Estrogen Receptor Confers Deoxyribonucleic Acid Binding and Transcriptional Activation of the Rat Prolactin Gene. Molecular Endocrinology, 1988, 2, 14-21.	3.7	180
220	Relationship between Drosophila gap gene tailless and a vertebrate nuclear receptor Tlx. Nature, 1994, 370, 375-379.	13.7	178
221	A Dynamic Role for HDAC7 in MEF2-mediated Muscle Differentiation. Journal of Biological Chemistry, 2001, 276, 17007-17013.	1.6	177
222	Expression-cloning and sequence of a cDNA encoding human growth hormone-releasing factor. Nature, 1983, 306, 86-88.	13.7	176
223	Two different cis-active elements transfer the transcriptional effects of both EGF and phorbol esters. Science, 1986, 234, 1552-1557.	6.0	175
224	Thymidine kinase obliteration: creation of transgenic mice with controlled immune deficiency Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2698-2702.	3.3	174
225	BRD4 is a novel therapeutic target for liver fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 15713-15718.	3.3	171
226	RXR alpha deficiency confers genetic susceptibility for aortic sac, conotruncal, atrioventricular cushion, and ventricular muscle defects in mice Journal of Clinical Investigation, 1996, 98, 1332-1343.	3.9	169
227	A Universal Gut-Microbiome-Derived Signature Predicts Cirrhosis. Cell Metabolism, 2020, 32, 878-888.e6.	7.2	167
228	Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors Molecular Endocrinology, 1994, 8, 1253-1261.	3.7	165
229	Activation of specific RXR heterodimers by an antagonist of RXR homodimers. Nature, 1996, 383, 450-453.	13.7	165
230	Transactivation and synergistic properties of the mineralocorticoid receptor: relationship to the glucocorticoid receptor Molecular Endocrinology, 1993, 7, 597-603.	3.7	163
231	PPARÂ signaling exacerbates mammary gland tumor development. Genes and Development, 2004, 18, 528-540.	2.7	163
232	Disease tolerance mediated by microbiome <i>E. coli</i> involves inflammasome and IGF-1 signaling. Science, 2015, 350, 558-563.	6.0	163
233	Human and mouse adipose-derived cells support feeder-independent induction of pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3558-3563.	3.3	162
234	Vitamin D Switches BAF Complexes to Protect Î ² Cells. Cell, 2018, 173, 1135-1149.e15.	13.5	162

RONALD M EVANS

#	Article	IF	CITATIONS
235	HATs on and beyond chromatin. Current Opinion in Cell Biology, 2001, 13, 218-224.	2.6	161
236	Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2627-2632.	3.3	158
237	Atrial-like phenotype is associated with embryonic ventricular failure in retinoid X receptor alpha -/- mice Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7386-7390.	3.3	157
238	Benefit of farnesoid X receptor inhibition in obstructive cholestasis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11323-11328.	3.3	157
239	Trans-activation by thyroid hormone receptors: functional parallels with steroid hormone receptors Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 3494-3498.	3.3	156
240	Unique forms of human and mouse nuclear receptor corepressor SMRT. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2639-2644.	3.3	156
241	Exercise and PGC-1α-Independent Synchronization of Type I Muscle Metabolism and Vasculature by ERRγ. Cell Metabolism, 2011, 13, 283-293.	7.2	156
242	ROR-Î ³ drives androgen receptor expression and represents a therapeutic target in castration-resistant prostate cancer. Nature Medicine, 2016, 22, 488-496.	15.2	155
243	PPARδPromotes Running Endurance by Preserving Glucose. Cell Metabolism, 2017, 25, 1186-1193.e4.	7.2	154
244	Eukaryotic transcriptional regulation and chromatin-associated protein phosphorylation by cyclic AMP. Science, 1982, 218, 1315-1317.	6.0	153
245	Transcriptional regulation in acute promyelocytic leukemia. Oncogene, 2001, 20, 7204-7215.	2.6	153
246	Isolation and Characterization of Mammalian HDAC10, a Novel Histone Deacetylase. Journal of Biological Chemistry, 2002, 277, 187-193.	1.6	153
247	Multiple retinoid-responsive receptors in a single cell: families of retinoid "X" receptors and retinoic acid receptors in the Xenopus egg Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2321-2325.	3.3	152
248	Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E297-302.	3.3	147
249	A mutated retinoic acid receptor-alpha exhibiting dominant-negative activity alters the lineage development of a multipotent hematopoietic cell line Genes and Development, 1992, 6, 2258-2269.	2.7	146
250	Characterization of Distinct Subpopulations of Hepatic Macrophages in HFD/Obese Mice. Diabetes, 2015, 64, 1120-1130.	0.3	143
251	Cardiac peroxisome proliferator-activated receptor Î ³ is essential in protecting cardiomyocytes from oxidative damage. Cardiovascular Research, 2007, 76, 269-279.	1.8	142
252	ERRÎ ³ Is Required for the Metabolic Maturation of Therapeutically Functional Glucose-Responsive Î ² ÂCells. Cell Metabolism, 2016, 23, 622-634.	7.2	139

#	Article	IF	CITATIONS
253	Characterization of cDNA and genomic clones encoding the precursor to rat hypothalamic growth hormone-releasing factor. Nature, 1985, 314, 464-467.	13.7	137
254	Cross-coupling of signal transduction pathways: zinc finger meets leucine zipper. Trends in Genetics, 1991, 7, 377-381.	2.9	137
255	Pbx-Hox Heterodimers Recruit Coactivator-Corepressor Complexes in an Isoform-Specific Manner. Molecular and Cellular Biology, 1999, 19, 8219-8225.	1.1	137
256	Ataxin 1, a SCA1 neurodegenerative disorder protein, is functionally linked to the silencing mediator of retinoid and thyroid hormone receptors. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4047-4052.	3.3	137
257	Protection from liver fibrosis by a peroxisome proliferator-activated receptor \hat{l} agonist. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1369-76.	3.3	136
258	Constitutive Activation of Transcription and Binding of Coactivator by Estrogen-Related Receptors 1 and 2. Molecular Endocrinology, 1999, 13, 2151-2162.	3.7	135
259	Identification of a nuclear domain with deacetylase activity. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10330-10335.	3.3	133
260	Novel developmental specificity in the nervous system of transgenic animals expressing growth hormone fusion genes. Nature, 1985, 317, 363-366.	13.7	132
261	Gene encoding human growth hormone-releasing factor precursor: structure, sequence, and chromosomal assignment Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 63-67.	3.3	131
262	Retinoic acid and retinoic acid receptors in development. Molecular Neurobiology, 1995, 10, 169-184.	1.9	131
263	Alternative RNA processing events in human calcitonin/calcitonin gene-related peptide gene expression Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 1994-1998.	3.3	130
264	Transcriptional inhibition by a glucocorticoid receptor-β-galactosidase fusion protein. Cell, 1988, 55, 1109-1114.	13.5	130
265	Modulation of glucocorticoid receptor function by protein kinase A Molecular Endocrinology, 1992, 6, 1451-1457.	3.7	130
266	Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation. Cell, 2016, 165, 1644-1657.	13.5	130
267	Targeting expression of a dominant-negative retinoic acid receptor mutant in the epidermis of transgenic mice results in loss of barrier function Genes and Development, 1995, 9, 317-329.	2.7	129
268	Activation and Repression by Nuclear Hormone Receptors: Hormone Modulates an Equilibrium between Active and Repressive States. Molecular and Cellular Biology, 1996, 16, 3807-3813.	1.1	129
269	Inhibition of IKKÉ› and TBK1 Improves Glucose Control in a Subset of Patients with Type 2 Diabetes. Cell Metabolism, 2017, 26, 157-170.e7.	7.2	127
270	Efficient insertion of genes into the mouse germ line via retroviral vectors Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 6148-6152.	3.3	125

#	Article	IF	CITATIONS
271	A methylation-mediator complex in hormone signaling. Genes and Development, 2004, 18, 144-156.	2.7	125
272	Stromal cues regulate the pancreatic cancer epigenome and metabolome. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1129-1134.	3.3	125
273	The phantom ligand effect: allosteric control of transcription by the retinoid X receptor Genes and Development, 1997, 11, 299-308.	2.7	122
274	Tlx and Pax6 co-operate genetically to establish the pallio-subpallial boundary in the embryonic mouse telencephalon. Development (Cambridge), 2003, 130, 1113-1122.	1.2	122
275	"Don't Know Much Bile-ologyâ€: Cell, 2000, 103, 1-4.	13.5	121
276	Inducible gene expression in mammalian cells and transgenic mice. Current Opinion in Biotechnology, 1997, 8, 608-616.	3.3	119
277	Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11893-11898.	3.3	119
278	Nuclear receptor TLX prevents retinal dystrophy and recruits the corepressor atrophin1. Genes and Development, 2006, 20, 1308-1320.	2.7	119
279	Alleviation of neuronal energy deficiency by mTOR inhibition as a treatment for mitochondria-related neurodegeneration. ELife, 2016, 5, .	2.8	117
280	Characterization of DNA binding and retinoic acid binding properties of retinoic acid receptor Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 3559-3563.	3.3	116
281	Spatial and temporal expression of the retinoic acid receptor in the regenerating amphibian limb. Nature, 1989, 337, 566-569.	13.7	115
282	Metabolic control of regulatory T cell (Treg) survival and function by Lkb1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12542-12547.	3.3	115
283	Identification of ligands and coligands for the ecdysone-regulated gene switch. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14512-14517.	3.3	114
284	Neutralization of Oxidized Phospholipids Ameliorates Non-alcoholic Steatohepatitis. Cell Metabolism, 2020, 31, 189-206.e8.	7.2	113
285	Infectious and selectable retrovirus containing an inducible rat growth hormone minigene. Science, 1984, 225, 993-998.	6.0	112
286	The orphan nuclear receptor Tlx regulates Pax2 and is essential for vision. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 2621-2625.	3.3	112
287	Exercise Mimetics: Impact on Health and Performance. Cell Metabolism, 2017, 25, 242-247.	7.2	112
288	The Drosophila gene knirps-related is a member of the steroid-receptor gene superf amily. Nature, 1988, 336, 493-496.	13.7	111

#	Article	IF	CITATIONS
289	Novel retinoic acid receptor ligands in Xenopus embryos Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4873-4878.	3.3	111
290	The Bcl6-SMRT/NCoR Cistrome Represses Inflammation to Attenuate Atherosclerosis. Cell Metabolism, 2012, 15, 554-562.	7.2	111
291	Activin and Its Receptors during Gastrulation and the Later Phases of Mesoderm Development in the Chick Embryo. Developmental Biology, 1995, 172, 192-205.	0.9	110
292	Compound mutants for retinoic acid receptor (RAR) \hat{l}^2 and RAR $\hat{l}\pm 1$ reveal developmental functions for multiple RAR \hat{l}^2 isoforms. Mechanisms of Development, 1996, 55, 33-44.	1.7	110
293	Minireview: Evolution of NURSA, the Nuclear Receptor Signaling Atlas. Molecular Endocrinology, 2009, 23, 740-746.	3.7	109
294	ERRs Mediate a Metabolic Switch Required for Somatic Cell Reprogramming to Pluripotency. Cell Stem Cell, 2015, 16, 547-555.	5.2	109
295	Interactions between the retinoid X receptor and a conserved region of the TATA-binding protein mediate hormone-dependent transactivation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8288-8292.	3.3	108
296	Cyclic AMP regulation of eukaryotic gene transcription by two discrete molecular mechanisms. Science, 1985, 229, 267-269.	6.0	107
297	Molecular genetics of acute promyelocytic leukemia. Trends in Genetics, 1999, 15, 179-184.	2.9	107
298	Calcitonin mRNA polymorphism: peptide switching associated with alternative RNA splicing events Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 1717-1721.	3.3	106
299	4-Oxoretinol, a new natural ligand and transactivator of the retinoic acid receptors Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 4879-4884.	3.3	105
300	Discovery and optimization of non-steroidal FXR agonists from natural product-like librariesElectronic supplementary information (ESI) available: schemes describing the synthesis of compounds in Fig. 2, 4, 5, 6 and 7. All final compounds were characterized by 1H NMR spectroscopy and HRMS are available on request. See http://www.rsc.org/suppdata/ob/b3/b300525a/. Organic and	1.5	105
301	Biomolecular Chemistry, 2003, 1, 908-920. Cross-talk among ROR alpha 1 and the Rev-erb family of orphan nuclear receptors. Molecular Endocrinology, 1994, 8, 1253-1261.	3.7	105
302	Altered expression of the calcitonin gene associated with RNA polymorphism. Nature, 1981, 290, 63-65.	13.7	103
303	Construction and identification by positive hybridization-translation of a bacterial plasmid containing a rat growth hormone structural gene sequence. Nucleic Acids Research, 1978, 5, 2039-2053.	6.5	102
304	Transgenic expression of PML/RARalpha impairs myelopoiesis Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 7900-7904.	3.3	102
305	Peroxisome Proliferator-Activated Receptor-Î ³ -Deficient Heterozygous Mice Develop an Exacerbated Neural Antigen-Induced Th1 Response and Experimental Allergic Encephalomyelitis. Journal of Immunology, 2003, 171, 5743-5750.	0.4	102
306	Estrogen-Related Receptor α (ERRα) and ERRγ Are Essential Coordinators of Cardiac Metabolism and Function. Molecular and Cellular Biology, 2015, 35, 1281-1298.	1.1	100

#	Article	IF	CITATIONS
307	Fibroblast Growth Factor Signaling in Metabolic Regulation. Frontiers in Endocrinology, 2015, 6, 193.	1.5	100
308	Signals and Receptors. Cold Spring Harbor Perspectives in Biology, 2016, 8, a005900.	2.3	98
309	Monomeric Complex of Human Orphan Estrogen Related Receptor-2 with DNA: A Pseudo-dimer Interface Mediates Extended Half-site Recognition. Journal of Molecular Biology, 2003, 327, 819-832.	2.0	97
310	Maternal PPARÎ ³ protects nursing neonates by suppressing the production of inflammatory milk. Genes and Development, 2007, 21, 1895-1908.	2.7	97
311	A Functional Retinoic Acid Receptor Encoded by the Gene on Human Chromosome 12. Molecular Endocrinology, 1990, 4, 837-844.	3.7	95
312	Seven-up inhibits ultraspiracle-based signaling pathways in vitro and in vivo. Molecular and Cellular Biology, 1995, 15, 6736-6745.	1.1	94
313	Obesity alters pathology and treatment response in inflammatory disease. Nature, 2022, 604, 337-342.	13.7	93
314	Retinoid Receptors. , 1993, 48, 99-121.		92
315	Ligation independent cloning irrespective of restriction site compatibility. Nucleic Acids Research, 1997, 25, 4165-4166.	6.5	91
316	Coexpression of nuclear receptor partners increases their solubility and biological activities. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 2278-2283.	3.3	91
317	Critical roles of the p160 transcriptional coactivators p/CIP and SRC-1 in energy balance. Cell Metabolism, 2006, 3, 111-122.	7.2	91
318	Peroxisome proliferator-activated receptor δ promotes very low-density lipoprotein-derived fatty acid catabolism in the macrophage. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 2434-2439.	3.3	91
319	Premature termination during adenovirus transcription. Nature, 1979, 278, 367-370.	13.7	90
320	Retinoid-dependent pathways suppress myocardial cell hypertrophy Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 7391-7395.	3.3	89
321	Feeder-dependent and feeder-independent iPS cell derivation from human and mouse adipose stem cells. Nature Protocols, 2011, 6, 346-358.	5.5	89
322	Nuclear receptors rock around the clock. EMBO Reports, 2014, 15, 518-528.	2.0	88
323	Epigenetic codes of PPARÎ ³ in metabolic disease. FEBS Letters, 2011, 585, 2121-2128.	1.3	87
324	Characterization of rat calcitonin mRNA Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 4444-4448.	3.3	86

#	Article	IF	CITATIONS
325	Introduction of rat growth hormone gene into mouse fibroblasts via a retroviral DNA vector: expression and regulation Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 2268-2272.	3.3	86
326	A Nuclear Receptor-Mediated Xenobiotic Response and Its Implication in Drug Metabolism and Host Protection. Current Drug Metabolism, 2003, 4, 59-72.	0.7	86
327	The active enhancer network operated by liganded RXR supports angiogenic activity in macrophages. Genes and Development, 2014, 28, 1562-1577.	2.7	85
328	Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 2198-2203.	3.3	84
329	Circadian repressors CRY1 and CRY2 broadly interact with nuclear receptors and modulate transcriptional activity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8776-8781.	3.3	84
330	Circadian clock cryptochrome proteins regulate autoimmunity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12548-12553.	3.3	84
331	SMRT repression of nuclear receptors controls the adipogenic set point and metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20021-20026.	3.3	83
332	CRY1/2 Selectively Repress PPARδ and Limit Exercise Capacity. Cell Metabolism, 2017, 26, 243-255.e6.	7.2	83
333	Polypeptide hormone regulation of gene transcription: specific 5' genomic sequences are required for epidermal growth factor and phorbol ester regulation of prolactin gene expression Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 2975-2979.	3.3	82
334	Forced retinoic acid receptor $\hat{l}\pm$ homodimers prime mice for APL-like leukemia. Cancer Cell, 2006, 9, 81-94.	7.7	82
335	RORÎ ³ is a targetable master regulator of cholesterol biosynthesis in a cancer subtype. Nature Communications, 2019, 10, 4621.	5.8	81
336	The Germ Cell Nuclear Factor mGCNF Is Expressed in the Developing Nervous System. Developmental Neuroscience, 1997, 19, 410-420.	1.0	80
337	Tumor suppressor protein (p)53, is a regulator of NF-κB repression by the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17117-17122.	3.3	80
338	Imaging Fibrosis and Separating Collagens using Second Harmonic Generation and Phasor Approach to Fluorescence Lifetime Imaging. Scientific Reports, 2015, 5, 13378.	1.6	79
339	Pituitary hyperplasia induced by ectopic expression of nerve growth factor Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 2764-2768.	3.3	78
340	Unexpected thymic hyperplasia in transgenic mice harboring a neuronal promoter fused with simian virus 40 large T antigen Molecular and Cellular Biology, 1987, 7, 3178-3184.	1.1	77
341	A retinoic acid-triggered cascade of HOXB1 gene activation Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 387-391.	3.3	77
342	Peroxisome proliferator-activated receptor-Î ³ in macrophage lipid homeostasis. Trends in Endocrinology and Metabolism, 2002, 13, 331-335.	3.1	76

#	Article	IF	CITATIONS
343	Peroxisome Proliferator-Activated Receptor Î ³ Controls Muc1 Transcription in Trophoblasts. Molecular and Cellular Biology, 2004, 24, 10661-10669.	1.1	76
344	Hormonal regulation of the nuclear localization signals of the human glucocorticosteroid receptor. Experimental Cell Research, 1992, 201, 99-108.	1.2	75
345	A subcutaneous adipose tissue–liver signalling axis controls hepatic gluconeogenesis. Nature Communications, 2015, 6, 6047.	5.8	75
346	Use of Angiotensin System Inhibitors Is Associated with Immune Activation and Longer Survival in Nonmetastatic Pancreatic Ductal Adenocarcinoma. Clinical Cancer Research, 2017, 23, 5959-5969.	3.2	75
347	Deficiency of PPARβ/Î′ in the Epidermis Results in Defective Cutaneous Permeability Barrier Homeostasis and Increased Inflammation. Journal of Investigative Dermatology, 2008, 128, 370-377.	0.3	74
348	FGF1 — a new weapon to control type 2 diabetes mellitus. Nature Reviews Endocrinology, 2017, 13, 599-609.	4.3	74
349	A mouse cdc25 homolog is differentially and developmentally expressed Genes and Development, 1992, 6, 578-590.	2.7	72
350	Interaction of the Ubc9 human homologue with c-Jun and with the glucocorticoid receptor. Steroids, 1996, 61, 257-262.	0.8	71
351	Alteration of a Single Amino Acid in Peroxisome Proliferator-Activated Receptor-α (PPARα) Generates a PPARδPhenotype. Molecular Endocrinology, 2000, 14, 733-740.	3.7	71
352	The structure of the ultraspiracle ligand-binding domain reveals a nuclear receptor locked in an inactive conformation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 1549-54.	3.3	71
353	Compartment-Selective Sensitivity of Cardiovascular Morphogenesis to Combinations of Retinoic Acid Receptor Gene Mutations. Circulation Research, 1997, 80, 757-764.	2.0	71
354	Two distinct dimerization interfaces differentially modulate target gene specificity of nuclear hormone receptors. Molecular Endocrinology, 1996, 10, 958-966.	3.7	71
355	Visible light reduces C. elegans longevity. Nature Communications, 2018, 9, 927.	5.8	70
356	Retinoic acid receptors initiate induction of the cytomegalovirus enhancer in embryonal cells Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7630-7634.	3.3	69
357	BXR, an embryonic orphan nuclear receptor activated by a novel class of endogenous benzoateÂmetabolites. Genes and Development, 1998, 12, 1269-1277.	2.7	69
358	Metabolic Crosstalk: Molecular Links Between Glycogen and Lipid Metabolism in Obesity. Diabetes, 2014, 63, 2935-2948.	0.3	69
359	The ginsenoside metabolite compound K, a novel agonist of glucocorticoid receptor, induces tolerance to endotoxinâ€induced lethal shock. Journal of Cellular and Molecular Medicine, 2008, 12, 1739-1753.	1.6	68
360	Localization of human ERBA2 to the 3p223p24.1 region of chromosome 3 and variable deletion in small cell lung cancer Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 9258-9262.	3.3	67

#	Article	IF	CITATIONS
361	Packing, specificity, and mutability at the binding interface between the p160 coactivator and CREB-binding protein. Protein Science, 2004, 13, 203-210.	3.1	66
362	Tissue damage drives co-localization of NF-κB, Smad3, and Nrf2 to direct Rev-erb sensitive wound repair in mouse macrophages. ELife, 2016, 5, .	2.8	66
363	The Structural Basis for the Specificity of Retinoid-X Receptor-selective Agonists: New Insights Into the Role of Helix H12. Journal of Biological Chemistry, 2002, 277, 11385-11391.	1.6	65
364	PPARs and LXRs: atherosclerosis goes nuclear. Trends in Endocrinology and Metabolism, 2004, 15, 158-165.	3.1	65
365	Skeletal muscle Nur77 expression enhances oxidative metabolism and substrate utilization. Journal of Lipid Research, 2012, 53, 2610-2619.	2.0	65
366	Evidence for two distinct retinoic acid response pathways for HOXB1 gene regulation Proceedings of the United States of America, 1995, 92, 392-396.	3.3	63
367	ERRÎ ³ Regulates Cardiac, Gastric, and Renal Potassium Homeostasis. Molecular Endocrinology, 2010, 24, 299-309.	3.7	61
368	Effective treatment of steatosis and steatohepatitis by fibroblast growth factor 1 in mouse models of nonalcoholic fatty liver disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2288-2293.	3.3	60
369	The nuclear receptor REV-ERBα modulates Th17 cell-mediated autoimmune disease. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18528-18536.	3.3	60
370	ERRÎ ³ Promotes Angiogenesis, Mitochondrial Biogenesis, and Oxidative Remodeling in PGC1α/β-Deficient Muscle. Cell Reports, 2018, 22, 2521-2529.	2.9	58
371	Pharmaceutical use of mouse models humanized for the xenobiotic receptor. Drug Discovery Today, 2002, 7, 509-515.	3.2	57
372	Thyroid hormone receptor repression is linked to type I pneumocyte–associated respiratory distress syndrome. Nature Medicine, 2011, 17, 1466-1472.	15.2	56
373	Evidence for orphan nuclear receptor TR4 in the etiology of Cushing disease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8555-8560.	3.3	56
374	Alteration of a Single Amino Acid in Peroxisome Proliferator-Activated Receptor-Â (PPARÂ) Generates a PPARÂ Phenotype. Molecular Endocrinology, 2000, 14, 733-740.	3.7	56
375	FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Reports, 2021, 35, 109331.	2.9	55
376	The dual role of ultraspiracle, the Drosophila retinoid X receptor, in the ecdysone response. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 3867-3872.	3.3	54
377	Lethal mitochondrial cardiomyopathy in a hypomorphic <i>Med30</i> mouse mutant is ameliorated by ketogenic diet. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19678-19682.	3.3	54
378	Cistromic and genetic evidence that the vitamin D receptor mediates susceptibility to latitude-dependent autoimmune diseases. Genes and Immunity, 2016, 17, 213-219.	2.2	54

#	Article	IF	CITATIONS
379	PPARδactivation by bexarotene promotes neuroprotection by restoring bioenergetic and quality control homeostasis. Science Translational Medicine, 2017, 9, .	5.8	54
380	Oligonucleotides in heterogeneous nuclear RNA: similarity of inverted repeats and RNA from repetitious DNA sites. Biochemistry, 1978, 17, 2776-2783.	1.2	53
381	Identification of a domain required for oncogenic activity and transcriptional suppression by v-erbA and thyroid-hormone receptor alpha Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 10668-10672.	3.3	53
382	Bone marrow NR4A expression is not a dominant factor in the development of atherosclerosis or macrophage polarization in mice. Journal of Lipid Research, 2013, 54, 806-815.	2.0	53
383	SRY-box-containing Gene 2 Regulation of Nuclear Receptor Tailless (Tlx) Transcription in Adult Neural Stem Cells. Journal of Biological Chemistry, 2012, 287, 5969-5978.	1.6	52
384	Structural basis for specific ligation of the peroxisome proliferator-activated receptor δ. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2563-E2570.	3.3	52
385	The Expression of GPIHBP1, an Endothelial Cell Binding Site for Lipoprotein Lipase and Chylomicrons, Is Induced by Peroxisome Proliferator-Activated Receptor-γ. Molecular Endocrinology, 2008, 22, 2496-2504.	3.7	51
386	Nuclear Receptor Corepressor SMRT Regulates Mitochondrial Oxidative Metabolism and Mediates Aging-Related Metabolic Deterioration. Cell Metabolism, 2010, 12, 643-653.	7.2	51
387	Revascularization of Ischemic Skeletal Muscle by Estrogen-Related Receptor-γ. Circulation Research, 2012, 110, 1087-1096.	2.0	51
388	Effects of naturally occurring coumarins on hepatic drug-metabolizing enzymes inmice. Toxicology and Applied Pharmacology, 2008, 232, 337-350.	1.3	49
389	Corepressor SMRT promotes oxidative phosphorylation in adipose tissue and protects against diet-induced obesity and insulin resistance. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 3412-3417.	3.3	49
390	Metabolic and Organelle Morphology Defects in Mice and Human Patients Define Spinocerebellar Ataxia Type 7 as a Mitochondrial Disease. Cell Reports, 2019, 26, 1189-1202.e6.	2.9	49
391	Identification and characterization of a Drosophila nuclear receptor with the ability to inhibit the ecdysone response Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10477-10481.	3.3	48
392	Pregnaneâ€xâ€receptor controls hepatic glucuronidation during pregnancy and neonatal development in humanized <i>UGT1</i> mice. Hepatology, 2012, 56, 658-667.	3.6	48
393	High-fat diet and FGF21 cooperatively promote aerobic thermogenesis in mtDNA mutator mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8714-8719.	3.3	47
394	Transgenic Mice: Applications to the Study of the Nervous System. Annual Review of Neuroscience, 1988, 11, 353-372.	5.0	46
395	Effect of heterozygous PPARÎ ³ deficiency and TZD treatment on insulin resistance associated with age and high-fat feeding. American Journal of Physiology - Endocrinology and Metabolism, 2003, 284, E618-E626.	1.8	46
396	Phosphorylation of the nuclear receptor corepressor 1 by protein kinase B switches its corepressor targets in the liver in mice. Hepatology, 2015, 62, 1606-1618.	3.6	46

#	Article	IF	CITATIONS
397	Dependence of Hippocampal Function on ERRÎ ³ -Regulated Mitochondrial Metabolism. Cell Metabolism, 2015, 21, 628-636.	7.2	45
398	A peroxisome proliferator-activated receptor-l̂´agonist provides neuroprotection in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. Neuroscience, 2013, 240, 191-203.	1.1	43
399	Road to exercise mimetics: targeting nuclear receptors in skeletal muscle. Journal of Molecular Endocrinology, 2013, 51, T87-T100.	1.1	43
400	Positive Reinforcing Mechanisms between GPR120 and PPARÎ ³ Modulate Insulin Sensitivity. Cell Metabolism, 2020, 31, 1173-1188.e5.	7.2	43
401	Calcipotriol Targets LRP6 to Inhibit Wnt Signaling in Pancreatic Cancer. Molecular Cancer Research, 2015, 13, 1509-1519.	1.5	42
402	β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. Journal of Clinical Investigation, 2022, 132, .	3.9	42
403	Nuclear Hormone Receptors Activate Direct, Inverted, and Everted Repeats. Annals of the New York Academy of Sciences, 1995, 761, 29-37.	1.8	41
404	The PML nuclear compartment and cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 1996, 1288, M25-M29.	3.3	40
405	Hepatic protein kinase C: Translocation stimulated by prolactin and partial hepatectomy. Life Sciences, 1987, 41, 2827-2834.	2.0	39
406	Triptolide targets super-enhancer networks in pancreatic cancer cells and cancer-associated fibroblasts. Oncogenesis, 2020, 9, 100.	2.1	39
407	O-GlcNAc Transferase Is Involved in Glucocorticoid Receptor-mediated Transrepression. Journal of Biological Chemistry, 2012, 287, 12904-12912.	1.6	38
408	Development of Ecdysone-Regulated Lentiviral Vectors. Molecular Therapy, 2005, 11, 142-148.	3.7	37
409	A transcriptional basis for physiology. Nature Medicine, 2004, 10, 1022-1026.	15.2	36
410	Farnesoid X Receptor an Emerging Target to Combat Obesity. Digestive Diseases, 2017, 35, 185-190.	0.8	36
411	Re-engineering the Pancreas Tumor Microenvironment: A "Regenerative Program" Hacked. Clinical Cancer Research, 2017, 23, 1647-1655.	3.2	36
412	Genomic and Epigenomic Landscaping Defines New Therapeutic Targets for Adenosquamous Carcinoma of the Pancreas. Cancer Research, 2020, 80, 4324-4334.	0.4	36
413	Neural basis of opioid-induced respiratory depression and its rescue. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	36
414	Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature, 2021, 599, 296-301.	13.7	36

#	Article	IF	CITATIONS
415	FGF1 and insulin control lipolysis by convergent pathways. Cell Metabolism, 2022, 34, 171-183.e6.	7.2	36
416	Chromosomal Localization of the Human Retinoid X Receptors. Genomics, 1994, 20, 397-403.	1.3	35
417	Role of the nuclear receptor PXR in acetaminophen hepatotoxicity. Drug Metabolism and Disposition, 2005, 33, 1827-36.	1.7	34
418	BCL-6: a possible missing link for anti-inflammatory PPAR-δ signalling in pancreatic beta cells. Diabetologia, 2006, 49, 2350-2358.	2.9	34
419	Relationship between production of epidermal growth factor receptors, gene amplification, and chromosome 7 translocation in variant A431 cells. Somatic Cell and Molecular Genetics, 1985, 11, 309-318.	0.7	33
420	ARSENITE DECREASES CYP3A4 AND RXRÎ \pm IN PRIMARY HUMAN HEPATOCYTES. Drug Metabolism and Disposition, 2005, 33, 993-1003.	1.7	33
421	Metformin-Mediated Bambi Expression in Hepatic Stellate Cells Induces Prosurvival Wnt/β-Catenin Signaling. Cancer Prevention Research, 2012, 5, 553-561.	0.7	33
422	Wealth management in the gut. Nature, 2013, 500, 538-539.	13.7	33
423	Turning Up the Heat on Membrane Fluidity. Cell, 2015, 161, 962-963.	13.5	33
424	Triclocarban Mediates Induction of Xenobiotic Metabolism through Activation of the Constitutive Androstane Receptor and the Estrogen Receptor Alpha. PLoS ONE, 2012, 7, e37705.	1.1	33
425	Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Scientific Reports, 2017, 7, 846.	1.6	32
426	NMR Spectroscopic Studies of the DNA-binding Domain of the Monomer-binding Nuclear Orphan Receptor, Human Estrogen Related Receptor-2. Journal of Biological Chemistry, 1997, 272, 18038-18043.	1.6	31
427	The Nuclear Receptor Signaling Atlas: Development of a Functional Atlas of Nuclear Receptors. Molecular Endocrinology, 2005, 19, 2433-2436.	3.7	31
428	Esrrg functions in early branch generation of the ureteric bud and is essential for normal development of the renal papilla. Human Molecular Genetics, 2011, 20, 917-926.	1.4	31
429	Extrahepatic Cancer Suppresses Nuclear Receptor–Regulated Drug Metabolism. Clinical Cancer Research, 2011, 17, 3170-3180.	3.2	31
430	Reprogramming pancreatic stellate cells via p53 activation: A putative target for pancreatic cancer therapy. PLoS ONE, 2017, 12, e0189051.	1.1	31
431	Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med, 2022, 3, 119-136.e8.	2.2	31
432	The synthesis and processing of a nuclear RNA precursor to rat pregrowth hormone messenger RNA. Nucleic Acids Research, 1979, 6, 3133-3144.	6.5	30

#	Article	IF	CITATIONS
433	ERRÎ ³ Preserves Brown Fat Innate Thermogenic Activity. Cell Reports, 2018, 22, 2849-2859.	2.9	30
434	E47 modulates hepatic glucocorticoid action. Nature Communications, 2019, 10, 306.	5.8	29
435	Shining Light on the COVID-19 Pandemic: A Vitamin D Receptor Checkpoint in Defense of Unregulated Wound Healing. Cell Metabolism, 2020, 32, 704-709.	7.2	29
436	Nuclear Receptors as Modulators of the Tumor Microenvironment. Cancer Prevention Research, 2012, 5, 3-10.	0.7	28
437	Loss of Transcriptional Repression by BCL6 Confers Insulin Sensitivity in the Setting of Obesity. Cell Reports, 2018, 25, 3283-3298.e6.	2.9	28
438	Barx2 and Pax7 Have Antagonistic Functions in Regulation of Wnt Signaling and Satellite Cell Differentiation. Stem Cells, 2014, 32, 1661-1673.	1.4	27
439	Nuclear receptors and AMPK: can exercise mimetics cure diabetes?. Journal of Molecular Endocrinology, 2016, 57, R49-R58.	1.1	27
440	Human T-cell leukemia retrovirus-Tax protein is a repressor of nuclear receptor signaling. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 2633-2638.	3.3	26
441	Genetic deficiency in Pparg does not alter development of experimental prostate cancer. Nature Medicine, 2003, 9, 1265-1266.	15.2	26
442	Nuclear receptors and metabolism: from feast to famine. Diabetologia, 2014, 57, 860-867.	2.9	26
443	Acetylation and Methylation in Nuclear Receptor Gene Activation. Methods in Enzymology, 2003, 364, 203-223.	0.4	25
444	Tick, tock, a β-cell clock. Nature, 2010, 466, 571-572.	13.7	25
445	Catecholamines suppress fatty acid re-esterification and increase oxidation in white adipocytes via STAT3. Nature Metabolism, 2020, 2, 620-634.	5.1	25
446	Differences Between the Integration of Avian Myeloblastosis Virus DNA in Leukemic Cells and of Endogenous Viral DNA in Normal Chicken Cells. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 3152-3156.	3.3	24
447	YIPF6 controls sorting of FGF21 into COPII vesicles and promotes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15184-15193.	3.3	24
448	Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries. Organic and Biomolecular Chemistry, 2003, 1, 908-20.	1.5	24
449	Glucocorticoid receptor maps to the distal long arm of chromosome 5. Cytogenetic and Genome Research, 1988, 49, 313-314.	0.6	22
450	Rosiglitazone activation of PPARÎ ³ suppresses fractalkine signaling. Journal of Molecular Endocrinology, 2010, 44, 135-142.	1.1	22

#	Article	IF	CITATIONS
451	Mechanisms of vascular dysfunction in mice with endothelium-specific deletion of the PPAR-δ gene. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1001-H1010.	1.5	21
452	Calcitonin, Prolactin, and Growth Hormone Gene Expression as Model Systems for the Characterization of Neuroendocrine Regulation. , 1983, 39, 305-351.		21
453	Barx2 and Pax7 Regulate Axin2 Expression in Myoblasts by Interaction with β-Catenin and Chromatin Remodelling. Stem Cells, 2016, 34, 2169-2182.	1.4	20
454	Hepatic actions of vitamin D receptor ligands: a sunshine option for chronic liver disease?. Expert Review of Clinical Pharmacology, 2013, 6, 597-599.	1.3	19
455	The PML domain of PML–RARα blocks senescence to promote leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12133-12138.	3.3	19
456	Bile Acid Analog Intercepts Liver Fibrosis. Cell, 2016, 166, 789.	13.5	19
457	Molecular Characterization of the Glucocorticoid Receptor. , 1989, 45, 1-27.		19
458	The Drosophila nuclear receptors: new insight into the actions of nuclear receptors in development. Current Opinion in Genetics and Development, 1992, 2, 269-274.	1.5	18
459	Identification of Three Novel Natural Product Compounds that Activate PXR and CAR and Inhibit Inflammation. Pharmaceutical Research, 2013, 30, 2199-2208.	1.7	18
460	Targeting Transcriptional and Epigenetic Reprogramming in Stromal Cells in Fibrosis and Cancer. Cold Spring Harbor Symposia on Quantitative Biology, 2015, 80, 249-255.	2.0	18
461	[22] Identification of receptors for retinoids as members of the steroid and thyroid hormone receptor family. Methods in Enzymology, 1990, 189, 223-232.	0.4	17
462	Intestinal NCoR1, a regulator of epithelial cell maturation, controls neonatal hyperbilirubinemia. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1432-E1440.	3.3	17
463	NCoR1 restrains thymic negative selection by repressing Bim expression to spare thymocytes undergoing positive selection. Nature Communications, 2017, 8, 959.	5.8	17
464	DSF Nuclear Receptor Acts As a Repressor in Culture and in Vivo. Developmental Biology, 2002, 245, 315-328.	0.9	16
465	Nuclear Receptor Signaling: A Home for Nuclear Receptor and Coregulator Signaling Research. Nuclear Receptor Signaling, 2014, 12, nrs.12006.	1.0	16
466	A novel pathway for retinoic acid-induced differentiation of F9 cells that is distinct from receptor-mediatedTrans-activation. In Vitro Cellular and Developmental Biology - Animal, 1994, 30, 761-768.	0.7	15
467	NMR Assignments and Secondary Structure of the Retinoid X Receptor alpha DNA-binding Domain. Evidence for the Novel C-terminal Helix. FEBS Journal, 1994, 224, 639-650.	0.2	15
468	Arsenic decreases RXRα-dependent transcription of CYP3A and suppresses immune regulators in hepatocytes. International Immunopharmacology, 2012, 12, 651-656.	1.7	15

#	Article	IF	CITATIONS
469	Targeting the pregnane X receptor in liver injury. Expert Opinion on Therapeutic Targets, 2012, 16, 1075-1083.	1.5	15
470	Bisphenol A derivatives act as novel coactivator-binding inhibitors for estrogen receptor β. Journal of Biological Chemistry, 2021, 297, 101173.	1.6	15
471	BRD9 regulates interferon-stimulated genes during macrophage activation via cooperation with BET protein BRD4. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	15
472	Rescue of a primary myelofibrosis model by retinoid-antagonist therapy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18820-18825.	3.3	14
473	Intestinal α1-2-Fucosylation Contributes to Obesity and Steatohepatitis in Mice. Cellular and Molecular Gastroenterology and Hepatology, 2021, 12, 293-320.	2.3	14
474	Daily running enhances molecular and physiological circadian rhythms in skeletal muscle. Molecular Metabolism, 2022, 61, 101504.	3.0	14
475	A Nuclear Strike against Listeria— The Evolving Life of LXR. Cell, 2004, 119, 149-151.	13.5	13
476	Arsenite decreases CYP3A23 induction in cultured rat hepatocytes by transcriptional and translational mechanisms. Toxicology and Applied Pharmacology, 2005, 209, 174-182.	1.3	13
477	β-catenin is essential for differentiation of primary myoblasts via cooperation with MyoD and α-catenin. Development (Cambridge), 2019, 146, .	1.2	13
478	RNA Processing Regulation of Neuroendorcrine Gene Expression. DNA and Cell Biology, 1982, 1, 323-328.	5.1	12
479	Co-repressor Release but Not Ligand Binding Is a Prerequisite for Transcription Activation by Human Retinoid Acid Receptor α Ligand-binding Domain. Journal of Biological Chemistry, 2003, 278, 7366-7373.	1.6	12
480	PPARδActivation Promotes Stratum Corneum Formation and Epidermal Permeability Barrier Development during Late Gestation. Journal of Investigative Dermatology, 2010, 130, 511-519.	0.3	12
481	Research Resource: Comparative Nuclear Receptor Atlas: Basal and Activated Peritoneal B-1 and B-2 Cells. Molecular Endocrinology, 2011, 25, 529-545.	3.7	12
482	Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	12
483	PPARs and the complex journey to obesity. Keio Journal of Medicine, 2004, 53, 53-58.	0.5	10
484	Hepatic Nuclear Receptor Expression Associates with Features of Histology in Pediatric Nonalcoholic Fatty Liver Disease. Hepatology Communications, 2018, 2, 1213-1226.	2.0	10
485	Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10381-10386.	3.3	10
486	Colon cancer checks in when bile acids check out: the bile acid–nuclear receptor axis in colon cancer. Essays in Biochemistry, 2021, 65, 1015-1024.	2.1	10

RONALD M EVANS

#	Article	IF	CITATIONS
487	Steroid hormone receptor homologs in development. Development (Cambridge), 1989, 107, 133-140.	1.2	10
488	Interorgan crosstalk in pancreatic islet function and pathology. FEBS Letters, 2022, 596, 607-619.	1.3	10
489	Rat growth hormone gene: intervening sequences separate the mRNA regions. Nucleic Acids Research, 1979, 6, 2471-2482.	6.5	9
490	Methylome, transcriptome, and PPARÎ ³ cistrome analyses reveal two epigenetic transitions in fat cells. Epigenetics, 2014, 9, 1195-1206.	1.3	9
491	Liver Cancer Checks in When Bile Acid Clocks Out. Cancer Cell, 2016, 30, 827-828.	7.7	9
492	Ligand-Dependent Corepressor (LCoR) Is a Rexinoid-Inhibited Peroxisome Proliferator-Activated Receptor <i>γ</i> –Retinoid X Receptor <i>α</i> Coactivator. Molecular and Cellular Biology, 2018, 38, .	1.1	9
493	Rational application of macrophage-specific LXR agonists avoids the pitfalls of SREBP-induced lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 5051-5053.	3.3	9
494	Repression of Retinoic Acid-Induced Transactivation by Embryonal LTR Binding Protein1. Journal of Biochemistry, 1994, 116, 1309-1316.	0.9	8
495	The effect of neuronal conditional knock-out of peroxisome proliferator-activated receptors in the MPTP mouse model of Parkinson's disease. Neuroscience, 2015, 300, 576-584.	1.1	8
496	Metabolic Regulation by Nuclear Receptors. , 2015, , 25-37.		8
497	The quest to burn fat, effortlessly and safely. Science, 2016, 353, 749-750.	6.0	8
498	Metabolic Messengers: fibroblast growth factor 1. Nature Metabolism, 2022, 4, 663-671.	5.1	8
499	Estrogen-Related Receptor γ Maintains Pancreatic Acinar Cell Function and Identity by Regulating Cellular Metabolism. Gastroenterology, 2022, 163, 239-256.	0.6	7
500	PPARδ preserves a high resistance to fatigue in the mouse medial gastrocnemius after spinal cord transection. Muscle and Nerve, 2016, 53, 287-296.	1.0	6
501	The v-erbA oncogene is a thyroid hormone receptor antagonist. International Journal of Cancer, 1989, 44, 26-28.	2.3	5
502	Genetic Analysis of the Retinoid Signala. Annals of the New York Academy of Sciences, 1996, 785, 12-22.	1.8	5
503	Journal of Molecular Endocrinology 25th anniversary special issue. Journal of Molecular Endocrinology, 2013, 51, E1-E3.	1.1	5
504	Developmental and Hormonal Regulation of Neuroendocrine Gene Transcription. , 1987, 43, 499-534.		5

Developmental and Hormonal Regulation of Neuroendocrine Gene Transcription., 1987, 43, 499-534. 504

#	Article	IF	CITATIONS
505	AMPK and PPARδAgonists Are Exercise Mimetics. Cell, 2008, 135, 189.	13.5	4
506	Polypeptide Hormone Regulation of Prolactin Gene Transcription. , 1985, , 37-68.		4
507	Discovery and Optimization of Non-steroidal FXR Agonists from Natural Product-Like Libraries ChemInform, 2003, 34, no.	0.1	2
508	Retrofitting Fat Metabolism. Cell Metabolism, 2009, 9, 483-484.	7.2	2
509	SRF'ing Around the Clock. Cell, 2013, 152, 381-382.	13.5	2
510	Tick, tock, a high-fat clock. Nature Reviews Endocrinology, 2014, 10, 191-192.	4.3	2
511	Oleic acid regulates hippocampal neurogenesis as a TLX ligand. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2203038119.	3.3	2
512	Staying the Distance: Avoiding the Proteasomal Trap. Cancer Cell, 2008, 13, 184-185.	7.7	1
513	PGC1 ¹² Mediates PPARl ³ Activation of Osteoclastogenesis and Rosiglitazone-Induced Bone Loss. Cell Metabolism, 2010, 12, 202.	7.2	1
514	Correction for Yueh et al., The commonly used antimicrobial additive triclosan is a liver tumor promoter. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, .	3.3	1
515	An S116R Phosphorylation Site Mutation in Human Fibroblast Growth Factor-1 Differentially Affects Mitogenic and Glucose-Lowering Activities. Journal of Pharmaceutical Sciences, 2016, 105, 3507-3519.	1.6	1
516	Let's Raise a Glass to Sydney: In Memoriam (1927-2019). Cancer Research, 2019, 79, 2797-2797.	0.4	1
517	Proton pump inhibitor use status does not modify the microbiome signature for cirrhosis. Cell Metabolism, 2021, 33, 457.	7.2	1
518	Establishing Orphan Nuclear Receptors PXR and CAR as Xenobiotic Receptors. , 0, , 43-59.		1
519	A Neural Thyroid Hormone Receptor Gene. , 1989, , 29-37.		1
520	Abstract 396: The bile acid receptor FXR suppress colitis-induced colon cancer. , 2020, , .		1
521	Target acquisition and acute promyelocytic leukemia. Journal of Clinical Investigation, 1999, 103, 1367-1368.	3.9	1
522	Neuron-specific alternative RNA processing in neuroendocrine gene expression. Biochemical Society Transactions, 1987, 15, 128-131.	1.6	0

#	Article	IF	CITATIONS
523	<title>Laser microbeam abalation of GFP-labeled nuclear organelles in a living cell.</title> ., 1997, , .		0
524	Preface. Progress in Molecular Biology and Translational Science, 2009, 87, xi-xiii.	0.9	0
525	PS21 - 100. A PPAR -FGF1 axis is required for adaptive adipose remodelling and metabolic homeostasis. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 170-170.	0.0	0
526	Wylie Walker Vale Jr (1941–2012). Nature, 2012, 483, 542-542.	13.7	0
527	Reply to "PPAR-Î ³ regulates pharmacological but not physiological or pathological osteoclast formation". Nature Medicine, 2016, 22, 1205-1205.	15.2	0
528	30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Short reflections on the discovery of the mineralocorticoid receptor. Journal of Endocrinology, 2017, 234, E1-E2.	1.2	0
529	Functions of PPAR Gamma in Macrophages and Atherosclerosis. Medical Science Symposia Series, 2002, , 9-16.	0.0	0
530	Homodimerization of Retinoic Acid Receptor alpha through its Fusion Partners Underlies Pathogenesis of Acute Promyelocytic Leukemia Blood, 2004, 104, 546-546.	0.6	0
531	PPARs: Running Around Obesity. FASEB Journal, 2007, 21, A90.	0.2	0
532	Nuclear Receptor Coactivators Co-ordinate Metabolic Responses to Hormonal and Environmental Stimuli. , 2008, , 539-557.		0
533	Negative Regulation of Enhancerâ€Associated RNA in Macrophages. FASEB Journal, 2012, 26, 912.1.	0.2	0
534	Molecular Mechanisms of Epidermal Growth Factor Regulation of Prolactin Gene Transcription. , 1987, , 473-498.		0
535	Calcitonin and Calcitonin-Related Peptide Genes. , 1987, , 277-301.		0
536	The Contributions of the Steroid Receptor Superfamily to Development, Physiology and Medicine. , 1989, , 11-28.		0
537	Retinoid and Thyroid Hormone Receptors. , 1991, , 187-198.		0
538	REGULATION OF GROWTH HORMONE GENE EXPRESSION. , 1983, , 267-275.		0

REGULATION OF GROWTH HORMONE GENE EXPRESSION. , 1983, , 267-275. 538