
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174619/publications.pdf Version: 2024-02-01

EMMANUEL DINTEALLY

#	Article	IF	CITATIONS
1	Neurogenesis After Stroke: A Therapeutic Perspective. Translational Stroke Research, 2021, 12, 1-14.	2.3	79
2	Abstract P767: Understanding the Role of Microglial Il-1Î \pm After Stroke. Stroke, 2021, 52, .	1.0	0
3	IL-1B drives opposing responses in primary tumours and bone metastases; harnessing combination therapies to improve outcome in breast cancer. Npj Breast Cancer, 2021, 7, 95.	2.3	28
4	Regenerative Potential of Hydrogels for Intracerebral Hemorrhage: Lessons from Ischemic Stroke and Traumatic Brain Injury Research. Advanced Healthcare Materials, 2021, 10, e2100455.	3.9	13
5	Cell-specific conditional deletion of interleukin-1 (IL-1) ligands and its receptors: a new toolbox to study the role of IL-1 in health and disease. Journal of Molecular Medicine, 2020, 98, 923-930.	1.7	5
6	Neuroinflammation and fibrosis in stroke: The good, the bad and the ugly. Journal of Neuroimmunology, 2020, 346, 577318.	1.1	24
7	Therapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysisTherapeutic potential of extracellular vesicles in preclinical stroke models: a systematic review and meta-analysis. BMJ Open Science, 2020, 44, e100047.	0.8	12
8	Systemic conditioned medium treatment from interleukin-1 primed mesenchymal stem cells promotes recovery after stroke. Stem Cell Research and Therapy, 2020, 11, 32.	2.4	28
9	Haematopoietic stem cell gene therapy with <scp>IL</scp> â€1Ra rescues cognitive loss in mucopolysaccharidosis <scp>IIIA</scp> . EMBO Molecular Medicine, 2020, 12, e11185.	3.3	31
10	Microglia in the Neurovascular Unit: Blood–Brain Barrier–microglia Interactions After Central Nervous System Disorders. Neuroscience, 2019, 405, 55-67.	1.1	119
11	Transfer of complex regional pain syndrome to mice via human autoantibodies is mediated by interleukin-1–induced mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13067-13076.	3.3	66
12	Reactive Oxygen Speciesâ€Responsive Nanoparticles for the Treatment of Ischemic Stroke. Advanced Therapeutics, 2019, 2, 1900038.	1.6	51
13	\hat{I}^21 integrin is a sensor of blood flow direction. Journal of Cell Science, 2019, 132, .	1.2	41
14	Interleukin 1 alpha administration is neuroprotective and neuro-restorative following experimental ischemic stroke. Journal of Neuroinflammation, 2019, 16, 222.	3.1	39
15	Interleukin-1 mediates ischaemic brain injury via distinct actions on endothelial cells and cholinergic neurons. Brain, Behavior, and Immunity, 2019, 76, 126-138.	2.0	48
16	Fibroblast-specific deletion of IL-1 receptor-1 reduces adverse cardiac remodeling following myocardial infarction. JCI Insight, 2019, 4, .	2.3	44
17	Pentraxin 3 regulates neutrophil infiltration to the brain during neuroinflammation. AMRC Open Research, 2019, 1, 10.	1.7	9
18	Pentraxin 3 promotes long-term cerebral blood flow recovery, angiogenesis, and neuronal survival after stroke. Journal of Molecular Medicine, 2018, 96, 1319-1332.	1.7	24

#	Article	IF	CITATIONS
19	Regenerative Medicine Therapies for Targeting Neuroinflammation After Stroke. Frontiers in Neurology, 2018, 9, 734.	1.1	52
20	Interleukin-1β has atheroprotective effects in advanced atherosclerotic lesions of mice. Nature Medicine, 2018, 24, 1418-1429.	15.2	192
21	Changes in the secretome of tri-dimensional spheroid-cultured human mesenchymal stem cells in vitro by interleukin-1 priming. Stem Cell Research and Therapy, 2018, 9, 11.	2.4	74
22	Interleukin-1 plays a central role in behaviour abnormalities in mucopolysaccharidosis type III (MPS III). Molecular Genetics and Metabolism, 2018, 123, S24-S25.	0.5	2
23	Generation of Human Mesenchymal Stem Cell 3D Spheroids Using Low-binding Plates. Bio-protocol, 2018, 8, .	0.2	17
24	Abstract TP95: Intra-arterial Interleukin-1 alpha is Well Tolerated and Neuroprotective After Experimental Ischemic Stroke. Stroke, 2018, 49, .	1.0	0
25	Abstract TP102: Delayed Interleukin-1 alpha Treatment is Profoundly Neuroreparative in Experimental Ischemic Stroke. Stroke, 2018, 49, .	1.0	0
26	Early changes in extracellular matrix in Alzheimer's disease. Neuropathology and Applied Neurobiology, 2017, 43, 167-182.	1.8	139
27	Mucopolysaccharidosis type IIIA storage substrate drives an innate immune neuro-inflammatory response. Molecular Genetics and Metabolism, 2017, 120, S27-S28.	0.5	1
28	<scp>IL</scp> â€1 signaling is critical for expansion but not generation of autoreactive <scp>GM</scp> ― <scp>CSF</scp> ⁺ Th17 cells. EMBO Journal, 2017, 36, 102-115.	3.5	50
29	Involvement of interleukin-1 type 1 receptors in lipopolysaccharide-induced sickness responses. Brain, Behavior, and Immunity, 2017, 66, 165-176.	2.0	23
30	Interleukin-1 primes human mesenchymal stem cells towards an anti-inflammatory and pro-trophic phenotype in vitro. Stem Cell Research and Therapy, 2017, 8, 79.	2.4	168
31	Abstract TP101: Intra-arterial IL-11̂± is Well Tolerated and Neuroprotective After Experimental Ischemic Stroke. Stroke, 2017, 48, .	1.0	0
32	Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells. PLoS ONE, 2016, 11, e0161505.	1.1	12
33	Characterization of a conditional interleukinâ€l receptor 1 mouse mutant using the Cre/LoxP system. European Journal of Immunology, 2016, 46, 912-918.	1.6	25
34	The extracellular matrix protein laminin-10 promotes blood–brain barrier repair after hypoxia and inflammation in vitro. Journal of Neuroinflammation, 2016, 13, 25.	3.1	54
35	<scp>IL</scp> â€lalpha induces angiogenesis in brain endothelial cells <i>inÂvitro</i> : implications for brain angiogenesis after acute injury. Journal of Neurochemistry, 2016, 136, 573-580.	2.1	38
36	Emerging roles of the acute phase protein pentraxin-3 during central nervous system disorders. Journal of Neuroimmunology, 2016, 292, 27-33.	1.1	21

#	Article	IF	CITATIONS
37	Pentraxin 3 mediates neurogenesis and angiogenesis after cerebral ischaemia. Journal of Neuroinflammation, 2015, 12, 15.	3.1	77
38	Genetic Cell Ablation Reveals Clusters of Local Self-Renewing Microglia in the Mammalian Central Nervous System. Immunity, 2015, 43, 92-106.	6.6	506
39	Abstract 164: IL-1a Enhances Angiogenic Neurorepair After Experimental Ischemic Stroke. Stroke, 2015, 46, .	1.0	0
40	The Acute-Phase Protein PTX3 is an Essential Mediator of Glial Scar Formation and Resolution of Brain Edema after Ischemic Injury. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 480-488.	2.4	73
41	Recombinant Tissue Plasminogen Activator Enhances Microglial Cell Recruitment after Stroke in Mice. Journal of Cerebral Blood Flow and Metabolism, 2014, 34, 802-812.	2.4	31
42	Activation of brain endothelial cells by interleukin-1 is regulated by the extracellular matrix after acute brain injury. Molecular and Cellular Neurosciences, 2013, 57, 93-103.	1.0	35
43	Loss of substance P and inflammation precede delayed neurodegeneration in the substantia nigra after cerebral ischemia. Brain, Behavior, and Immunity, 2013, 29, 51-61.	2.0	56
44	Neuroimmmune interactions of cannabinoids in neurogenesis: focus on interleukin-1β (IL-1β) signalling. Biochemical Society Transactions, 2013, 41, 1577-1582.	1.6	23
45	Neutrophil Cerebrovascular Transmigration Triggers Rapid Neurotoxicity through Release of Proteases Associated with Decondensed DNA. Journal of Immunology, 2012, 189, 381-392.	0.4	174
46	Neuronal toll-like receptor 4 signaling induces brain endothelial activation and neutrophil transmigration in vitro. Journal of Neuroinflammation, 2012, 9, 230.	3.1	113
47	Oxygen–glucose deprivation and interleukinâ€lα trigger the release of perlecan LG3 by cells of neurovascular unit. Journal of Neurochemistry, 2011, 119, 760-771.	2.1	29
48	Contribution of Interleukin-1 Receptor Accessory Protein b to Interleukin-1 Actions in Neuronal Cells. NeuroSignals, 2011, 19, 222-230.	0.5	15
49	Interleukin-1 and Stroke: Biomarker, Harbinger of Damage, and Therapeutic Target. Cerebrovascular Diseases, 2011, 32, 517-527.	0.8	103
50	Adhesion to the extracellular matrix is required for interleukin-1 beta actions leading to reactive phenotype in rat astrocytes. Molecular and Cellular Neurosciences, 2010, 44, 272-281.	1.0	44
51	Transport of interleukinâ€l across cerebromicrovascular endothelial cells. British Journal of Pharmacology, 2009, 156, 1115-1123.	2.7	82
52	Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine, 2009, 45, 1-7.	1.4	62
53	Adhesion to fibronectin regulates interleukin-1 beta expression in microglial cells. Molecular and Cellular Neurosciences, 2009, 41, 148-155.	1.0	27
54	20th National Meeting of the British Neuroscience Association. Future Neurology, 2009, 4, 547-549.	0.9	0

#	Article	IF	CITATIONS
55	Interleukinâ€1â€induced interleukinâ€6 synthesis is mediated by the neutral sphingomyelinase/Src kinase pathway in neurones. British Journal of Pharmacology, 2008, 153, 775-783.	2.7	53
56	Neuronal injury induces the release of pro-interleukin-1β from activated microglia in vitro. Brain Research, 2008, 1236, 1-7.	1.1	11
57	Mechanisms of interleukin-6 synthesis and release induced by interleukin-1 and cell depolarisation in neurones. Molecular and Cellular Neurosciences, 2008, 37, 110-118.	1.0	24
58	Matrix metalloproteinase-9 and urokinase plasminogen activator mediate interleukin-1-induced neurotoxicity. Molecular and Cellular Neurosciences, 2008, 37, 135-142.	1.0	49
59	Differential effects of interleukin-1 alpha and beta on interleukin-6 and chemokine synthesis in neurones. Molecular and Cellular Neurosciences, 2008, 38, 259-265.	1.0	35
60	NF-ÂB activation by the Toll-IL-1 receptor domain protein MyD88 adapter-like is regulated by caspase-1. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3372-3377.	3.3	118
61	Mechanisms of regulation for interleukin-1β in neurodegenerative disease. Neuropharmacology, 2007, 52, 1563-1569.	2.0	45
62	100 NF-κB Activation by Mal/Tirap is Regulated by Caspase-1. Cytokine, 2007, 39, 27-28.	1.4	1
63	Leptin induces interleukin-1β release from rat microglial cells through a caspase 1 independent mechanism. Journal of Neurochemistry, 2007, 102, 826-833.	2.1	88
64	Interleukin-1-induced neurotoxicity is mediated by glia and requires caspase activation and free radical release. Journal of Neurochemistry, 2006, 98, 258-266.	2.1	147
65	KCC3 and KCC4 expression in rat adult forebrain. Brain Research, 2006, 1110, 39-45.	1.1	29
66	Gene regulation by IL- $1^{\hat{1}^2}$ independent of IL-1R1 in the mouse brain. Glia, 2006, 53, 477-483.	2.5	24
67	Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia, 2006, 53, 551-556.	2.5	110
68	Differential actions of IL-1 alpha and IL-1 beta in glial cells share common IL-1 signalling pathways. NeuroReport, 2005, 16, 153-157.	0.6	18
69	Regulation of expression of the novel IL-1 receptor family members in the mouse brain. Journal of Neurochemistry, 2005, 95, 324-330.	2.1	48
70	Neuroprotective effects of the synthetic cannabinoid HU-210 in primary cortical neurons are mediated by phosphatidylinositol 3-kinase/AKT signaling. Molecular and Cellular Neurosciences, 2005, 28, 189-194.	1.0	67
71	The interleukin-1-related cytokine IL-1F8 is expressed in glial cells, but fails to induce IL-1? signalling responses. Cytokine, 2005, 29, 245-50.	1.4	29
72	The Expanding Interleukin-1 Family and Its Receptors: Do Alternative IL-1 Receptor/Signaling Pathways Exist in the Brain?. Molecular Neurobiology, 2003, 27, 239-248.	1.9	38

EMMANUEL PINTEAUX

#	Article	IF	CITATIONS
73	Identification of a truncated IL-18RÎ ² mRNA: a putative regulator of IL-18 expressed in rat brain. Journal of Neuroimmunology, 2003, 145, 40-45.	1.1	36
74	IL-1Rrp2 expression and IL-1F9 (IL-1H1) actions in brain cells. Journal of Neuroimmunology, 2003, 139, 36-43.	1.1	42
75	Endogenous Interleukin-1 Receptor Antagonist Mediates Anti-Inflammatory and Neuroprotective Actions of Cannabinoids in Neurons and Glia. Journal of Neuroscience, 2003, 23, 6470-6474.	1.7	185
76	Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. Journal of Neurochemistry, 2002, 83, 754-763.	2.1	151
77	IL-1β signalling in glial cells in wildtype and IL-1RI deficient mice. British Journal of Pharmacology, 2002, 136, 312-320.	2.7	77
78	Distribution of mitochondrial manganese superoxide dismutase among rat glial cells in culture. , 1998, 22, 408-414.		32
79	Modulation of Oxygen-Radical-Scavenging Enzymes by Oxidative Stress in Primary Cultures of Rat Astroglial Cells. Developmental Neuroscience, 1996, 18, 397-404.	1.0	46
80	70-kDa heat shock protein expression in cultured rat astrocytes after hypoxia: regulatory effect of almitrine. Neurochemical Research, 1995, 20, 11-15.	1.6	8