
Sergio ObregÃ³n

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174584/publications.pdf Version: 2024-02-01

SEDCIO ORDECÃ3N

#	Article	IF	CITATIONS
1	Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. Journal of Photochemistry and Photobiology A: Chemistry, 2013, 253, 16-21.	2.0	235
2	Hydrothermal synthesis of BiVO4: Structural and morphological influence on the photocatalytic activity. Applied Catalysis B: Environmental, 2012, 117-118, 59-66.	10.8	175
3	Performance of the polymeric g-C3N4 photocatalyst through the degradation of pharmaceutical pollutants under UV–vis irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 324, 47-52.	2.0	138
4	Monoclinic–Tetragonal Heterostructured BiVO ₄ by Yttrium Doping with Improved Photocatalytic Activity. Journal of Physical Chemistry C, 2013, 117, 24479-24484.	1.5	134
5	An approach to the photocatalytic mechanism in the TiO2-nanomaterials microorganism interface for the control of infectious processes. Applied Catalysis B: Environmental, 2020, 270, 118853.	10.8	126
6	Improved H2 production of Pt-TiO2/g-C3N4-MnOx composites by an efficient handling of photogenerated charge pairs. Applied Catalysis B: Environmental, 2014, 144, 775-782.	10.8	111
7	High-performance Er3+–TiO2 system: Dual up-conversion and electronic role of the lanthanide. Journal of Catalysis, 2013, 299, 298-306.	3.1	108
8	Cascade charge separation mechanism by ternary heterostructured BiPO4/TiO2/g-C3N4 photocatalyst. Applied Catalysis B: Environmental, 2016, 184, 96-103.	10.8	100
9	Active Site Considerations on the Photocatalytic H ₂ Evolution Performance of Cu-Doped TiO ₂ Obtained by Different Doping Methods. ACS Catalysis, 2014, 4, 3320-3329.	5.5	96
10	Heterostructured Er3+ doped BiVO4 with exceptional photocatalytic performance by cooperative electronic and luminescence sensitization mechanism. Applied Catalysis B: Environmental, 2014, 158-159, 242-249.	10.8	94
11	Synthesis and characterization of γ-Bi2MoO6 prepared by co-precipitation: Photoassisted degradation of organic dyes under vis-irradiation. Journal of Molecular Catalysis A, 2010, 320, 85-91.	4.8	92
12	Synthesis, characterization and visible-light photocatalytic properties of Bi2WO6 and Bi2W2O9 obtained by co-precipitation method. Applied Catalysis A: General, 2010, 383, 128-133.	2.2	91
13	Evidence of upconversion luminescence contribution to the improved photoactivity of erbium doped TiO2 systems. Chemical Communications, 2012, 48, 7865.	2.2	85
14	Excellent photocatalytic activity of Yb3+, Er3+ co-doped BiVO4 photocatalyst. Applied Catalysis B: Environmental, 2014, 152-153, 328-334.	10.8	84
15	Erbium doped TiO2–Bi2WO6 heterostructure with improved photocatalytic activity under sun-like irradiation. Applied Catalysis B: Environmental, 2013, 140-141, 299-305.	10.8	82
16	Photocatalytic properties of Bi2MoO6 nanoparticles prepared by an amorphous complex precursor. Catalysis Today, 2007, 129, 194-199.	2.2	81
17	Cu–TiO2 systems for the photocatalytic H2 production: Influence of structural and surface support features. Applied Catalysis B: Environmental, 2015, 179, 468-478.	10.8	79
18	On the different photocatalytic performance of BiVO4 catalysts for Methylene Blue and Rhodamine B degradation. Journal of Molecular Catalysis A, 2013, 376, 40-47.	4.8	77

SERGIO OBREGÃ³N

#	Article	IF	CITATIONS
19	Exalted photocatalytic activity of tetragonal BiVO ₄ by Er ³⁺ doping through a luminescence cooperative mechanism. Dalton Transactions, 2014, 43, 311-316.	1.6	71
20	Evolution of H2 photoproduction with Cu content on CuO -TiO2 composite catalysts prepared by a microemulsion method. Applied Catalysis B: Environmental, 2015, 163, 214-222.	10.8	61
21	Electrophoretic deposition of CdS coatings and their photocatalytic activities in the degradation of tetracycline antibiotic. Applied Surface Science, 2016, 386, 412-417.	3.1	60
22	An efficient and stable WO3/g-C3N4 photocatalyst for ciprofloxacin and orange G degradation. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384, 112010.	2.0	59
23	Electrophoretic deposition of photocatalytic materials. Advances in Colloid and Interface Science, 2019, 269, 236-255.	7.0	56
24	SBA-15 assisted preparation of mesoporous g-C3N4 for photocatalytic H2 production and Au3+ fluorescence sensing. Applied Surface Science, 2019, 488, 205-212.	3.1	53
25	Direct evidence of the photocatalytic generation of reactive oxygen species (ROS) in a Bi2W2O9 layered-structure. Journal of Colloid and Interface Science, 2017, 506, 111-119.	5.0	48
26	Bifunctional, Monodisperse BiPO4-Based Nanostars: Photocatalytic Activity and Luminescent Applications. Crystal Growth and Design, 2014, 14, 3319-3326.	1.4	45
27	Facile synthesis of InVO4/TiO2 heterojunction photocatalysts with enhanced photocatalytic properties under UV–vis irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2015, 299, 152-158.	2.0	44
28	Visible and near-infrared light-driven photocatalytic activity of erbium-doped CaTiO3 system. Journal of Molecular Catalysis A, 2015, 410, 19-25.	4.8	43
29	Improved O ₂ evolution from a water splitting reaction over Er ³⁺ and Y ³⁺ co-doped tetragonal BiVO ₄ . Catalysis Science and Technology, 2014, 4, 2042-2050.	2.1	42
30	A ternary Er3+-BiVO4/TiO2 complex heterostructure with excellent photocatalytic performance. RSC Advances, 2014, 4, 6920.	1.7	40
31	Layered double hydroxides and related hybrid materials for removal of pharmaceutical pollutants from water. Journal of Environmental Management, 2021, 288, 112399.	3.8	37
32	Electrophoretic deposition of PbMoO4 nanoparticles for photocatalytic degradation of tetracycline. Applied Surface Science, 2018, 457, 501-507.	3.1	34
33	Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: a brief review. Journal of Sol-Gel Science and Technology, 2022, 102, 125-141.	1.1	33
34	On the origin of the photocatalytic activity improvement of BIVO4 through rare earth tridoping. Applied Catalysis A: General, 2015, 501, 56-62.	2.2	31
35	Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: Inactivation of Escherichia coli vs oxidation of methanol. Catalysis Today, 2015, 240, 93-99.	2.2	31
36	Photocatalytic coatings of silver–TiO2 nanocomposites on foamed waste-glass prepared by sonochemical process. Journal of Photochemistry and Photobiology A: Chemistry, 2011, 221, 71-76.	2.0	30

Sergio ObregÃ³N

#	Article	IF	CITATIONS
37	TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. Microporous and Mesoporous Materials, 2016, 222, 120-127.	2.2	30
38	A novel type-II Bi2W2O9/g-C3N4 heterojunction with enhanced photocatalytic performance under simulated solar irradiation. Materials Science in Semiconductor Processing, 2020, 113, 105056.	1.9	28
39	The role of silver nanoparticles functionalized on TiO ₂ for photocatalytic disinfection of harmful algae. RSC Advances, 2015, 5, 44470-44475.	1.7	22
40	Effective coupling of BiPO4/g-C3N4 hybrid composites in ciprofloxacin photodegradation. Research on Chemical Intermediates, 2019, 45, 3865-3878.	1.3	22
41	Remove of marine plankton by photocatalysts with Aurivillius-type structure. Catalysis Communications, 2010, 11, 326-330.	1.6	21
42	Effective photoreduction of a nitroaromatic environmental endocrine disruptor by AgNPs functionalized on nanocrystalline TiO ₂ . RSC Advances, 2015, 5, 15194-15197.	1.7	21
43	Photocatalytic Escherichia coli inactivation by means of trivalent Er 3+ , Y 3+ doping of BiVO 4 system. Applied Catalysis A: General, 2016, 526, 126-131.	2.2	20
44	Loading effects of silver nanoparticles on hydrogen photoproduction using a Cu-TiO2 photocatalyst. Materials Letters, 2016, 173, 174-177.	1.3	20
45	A novel two-steps solvothermal synthesis of nanosized BiPO4 with enhanced photocatalytic activity. Journal of Molecular Catalysis A, 2015, 402, 92-99.	4.8	17
46	Water splitting performance of Er3+-doped YVO4 prepared from a layered K3V5O14 precursor. Chemical Engineering Journal, 2015, 262, 29-33.	6.6	15
47	Long-lived photoinduced charge-carriers in Er3+ doped CaTiO3 for photocatalytic H2 production under UV irradiation. Catalysis Communications, 2016, 84, 36-39.	1.6	15
48	Novel g-C 3 N 4 photocatalytic coatings with spearhead-like morphology prepared by an electrophoretic deposition route. Materials Letters, 2017, 200, 59-62.	1.3	15
49	New insights into the fluorescent sensing of Fe3+ ions by g-C3N4 prepared from different precursors. Materials Research Bulletin, 2021, 142, 111385.	2.7	14
50	Photocatalytic behavior of α-Bi2Mo3O12 prepared by the Pechini method: degradation of organic dyes under visible-light irradiation. Research on Chemical Intermediates, 2010, 36, 925-936.	1.3	11
51	Facile Synthesis of Ultrafine Akaganeite Nanoparticles for the Removal of Hexavalent Chromium: Adsorption Properties, Isotherm and Kinetics. Journal of Nanoscience and Nanotechnology, 2017, 17, 4471-4479.	0.9	11
52	Enhanced photocatalytic behavior of BiVO4 through photoinduced charge transfer to amorphous β-FeOOH nanoparticles. Ceramics International, 2016, 42, 17773-17780.	2.3	10
53	Facile preparation of BiVO4 thin film by screen-printing technique for its photocatalytic performance in the degradation of tetracycline under simulated sunlight irradiation. Research on Chemical Intermediates, 2019, 45, 2855-2867.	1.3	8
54	Synthesis and characterization of CaBiVMoO8 as a novel visible-light-driven photocatalyst. Materials Letters, 2017, 189, 164-167.	1.3	7

Sergio ObregÃ³n

#	Article	IF	CITATIONS
55	Nanocrystalline ErVO4 as a novel photocatalyst for degradation of organic compounds and solar fuels production. Journal of Materials Science: Materials in Electronics, 2018, 29, 3967-3972.	1.1	7
56	Calcium carbonate hierarchical structures formed by a combined electrophoretic/electrochemical deposition. Materials Letters, 2021, 295, 129856.	1.3	6
57	Fabrication of graphitic carbon nitride films by inkjet printing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125919.	2.3	5
58	Facile Synthesis of Decahedral Particles of Anatase TiO ₂ with Exposed {001} Facets. Journal of Nanoscience and Nanotechnology, 2015, 15, 7351-7356.	0.9	4
59	Photocatalytic performance of CaBiVMoO8 catalysts for orangeÂG and rhodamineÂB degradation. Research on Chemical Intermediates, 2017, 43, 5727-5739.	1.3	4
60	Effect of the Ni(NO3)2 additive on the electrophoretic deposition of NiO nanoparticles. Ceramics International, 2020, 46, 28528-28535.	2.3	4
61	Role of assisting reagents on the synthesis of α-Fe2O3 by microwave-assisted hydrothermal reaction. Journal of Materials Science: Materials in Electronics, 2021, 32, 9551-9566.	1.1	3
62	Red Tide Inactivation by Silver Doped TiO ₂ Produced in Sono-Chemistry Method. Materials Science Forum, 2010, 658, 280-283.	0.3	2
63	Electrophoretic deposition of flower-like CaBiVMoO8 particles for the photocatalytic degradation of pharmaceutical pollutants. Colloids and Interface Science Communications, 2020, 34, 100223.	2.0	2
64	Photocatalytic Degradation of Pharmaceuticals through Bulk and Mesoporous g-C3N4/TiO2 Systems. Journal of Photocatalysis, 2021, 2, 105-113.	0.4	0