Maurizio Selva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174525/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules, 2022, 27, 632.	1.7	3
2	N-Doped Carbon Dot Hydrogels from Brewing Waste for Photocatalytic Wastewater Treatment. ACS Omega, 2022, 7, 4052-4061.	1.6	22
3	Carbon-supported WO _{<i>x</i>} –Ru-based catalysts for the selective hydrogenolysis of glycerol to 1,2-propanediol. Catalysis Science and Technology, 2022, 12, 259-272.	2.1	15
4	Multiphase Hydrogenation of <scp>d</scp> -Glucosamine Hydrochloride, N-Acetyl- <scp>d</scp> -Glucosamine, <scp>d</scp> -Glucose, and <scp>d</scp> -Maltose over Ru/C with Integrated Catalyst Recovery. ACS Sustainable Chemistry and Engineering, 2022, 10, 2844-2858.	3.2	8
5	A New Family of Renewable Thermosets: Kraft Lignin Polyâ€adipates. ChemSusChem, 2022, 15, .	3.6	10
6	Isopropenyl esters (iPEs) in green organic synthesis. Chemistry - A European Journal, 2022, , .	1.7	2
7	Efficient and stable titania-based nanocatalytic materials for the reductive amination of furfural. Materials Today Chemistry, 2022, 24, 100873.	1.7	4
8	Tunable Multiâ€Phase System for Highly Chemoâ€Selective Oxidation of Hydroxymethylâ€Furfural. ChemSusChem, 2022, 15, .	3.6	7
9	Tuning the Selectivity of the Hydrogenation/Hydrogenolysis of 5â€Hydroxymethylfurfural under Batch Multiphase and Continuousâ€Flow Conditions. ChemSusChem, 2022, 15, .	3.6	7
10	Frontispiece: Isopropenyl Esters (iPEs) in Green Organic Synthesis. Chemistry - A European Journal, 2022, 28, .	1.7	0
11	Direct oxidative carboxylation of terminal olefins to cyclic carbonates by tungstate assisted-tandem catalysis. Green Chemistry, 2021, 23, 7609-7619.	4.6	5
12	Tandem catalysis: one-pot synthesis of cyclic organic carbonates from olefins and carbon dioxide. Green Chemistry, 2021, 23, 1921-1941.	4.6	51
13	Biobased Carbon Dots: From Fish Scales to Photocatalysis. Nanomaterials, 2021, 11, 524.	1.9	25
14	Diethylene Glycol/NaBr Catalyzed CO ₂ Insertion into Terminal Epoxides: From Batch to Continuous Flow. ChemCatChem, 2021, 13, 2005-2016.	1.8	12
15	Diversified upgrading of HMF via acetylation, aldol condensation, carboxymethylation, vinylation and reductive amination reactions. Molecular Catalysis, 2021, 514, 111838.	1.0	9
16	Concatenated Batch and Continuous Flow Procedures for the Upgrading of Glycerol-Derived Aminodiols via N-Acetylation and Acetalization Reactions. Catalysts, 2021, 11, 21.	1.6	5
17	One-Pot Tandem Catalytic Epoxidation—CO2 Insertion of Monounsaturated Methyl Oleate to the Corresponding Cyclic Organic Carbonate. Catalysts, 2021, 11, 1477.	1.6	6
18	Precursor-Dependent Photocatalytic Activity of Carbon Dots. Molecules, 2020, 25, 101.	1.7	22

#	Article	IF	CITATIONS
19	Advancements and Complexities in the Conversion of Lignocellulose Into Chemicals and Materials. Frontiers in Chemistry, 2020, 8, 797.	1.8	14
20	A transesterification–acetalization catalytic tandem process for the functionalization of glycerol: the pivotal role of isopropenyl acetate. Green Chemistry, 2020, 22, 5487-5496.	4.6	12
21	Supercritical CO2 extraction of natural antibacterials from low value weeds and agro-waste. Journal of CO2 Utilization, 2020, 40, 101198.	3.3	12
22	Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chemical Society Reviews, 2020, 49, 4527-4563.	18.7	93
23	Nanotechnologies for the sustainable valorization of biowastes. Current Opinion in Green and Sustainable Chemistry, 2020, 24, 38-41.	3.2	10
24	Tungstate ionic liquids as catalysts for CO2 fixation into epoxides. Molecular Catalysis, 2020, 486, 110854.	1.0	11
25	Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chemistry, 2020, 22, 1145-1149.	4.6	38
26	Reaction of Glycerol with Trimethyl Orthoformate: Towards the Synthesis of New Glycerol Derivatives. Catalysts, 2019, 9, 534.	1.6	2
27	Acid-Catalyzed Reactions of Isopropenyl Esters and Renewable Diols: A 100% Carbon Efficient Transesterification/Acetalization Tandem Sequence, from Batch to Continuous Flow. ACS Sustainable Chemistry and Engineering, 2019, 7, 18810-18818.	3.2	16
28	Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews, 2019, 48, 4791-4822.	18.7	244
29	A Multiphase Protocol for Selective Hydrogenation and Reductive Amination of Levulinic Acid with Integrated Catalyst Recovery. ChemSusChem, 2019, 12, 3343-3354.	3.6	40
30	Applications of Dimethyl Carbonate for the Chemical Upgrading of Biosourced Platform Chemicals. ACS Sustainable Chemistry and Engineering, 2019, 7, 6471-6479.	3.2	73
31	Single-Step Methylation of Chitosan Using Dimethyl Carbonate as a Green Methylating Agent. Molecules, 2019, 24, 3986.	1.7	11
32	Benign-by-design advanced nanomaterials for environmental and energy-related applications. Current Opinion in Green and Sustainable Chemistry, 2019, 15, 98-102.	3.2	6
33	CO2 and Organic Carbonates for the Sustainable Valorization of Renewable Compounds. RSC Green Chemistry, 2019, , 319-342.	0.0	2
34	Phosphonium salts and P-ylides. Organophosphorus Chemistry, 2019, , 145-198.	0.3	1
35	High-Temperature Batch and Continuous-Flow Transesterification of Alkyl and Enol Esters with Glycerol and Its Acetal Derivatives. ACS Sustainable Chemistry and Engineering, 2018, 6, 3964-3973. ————————————————————————————————————	3.2	25
36	Dimethyl carbonate: a versatile reagent for a sustainable valorization of renewables. Green Chemistry, 2018, 20, 288-322.	4.6	204

#	Article	IF	CITATIONS
37	Design of Carbon Dots for Metal-free Photoredox Catalysis. ACS Applied Materials & Interfaces, 2018, 10, 40560-40567.	4.0	79
38	Two-Step Synthesis of Dialkyl Carbonates through Transcarbonation and Disproportionation Reactions Catalyzed by Calcined Hydrotalcites. ACS Sustainable Chemistry and Engineering, 2018, 6, 9488-9497.	3.2	4
39	Carbon Dots from Sugars and Ascorbic Acid: Role of the Precursors on Morphology, Properties, Toxicity, and Drug Uptake. ACS Medicinal Chemistry Letters, 2018, 9, 832-837.	1.3	95
40	Multiphase hydrodechlorination of polychlorinated aromatics – Towards scale-up. Chemosphere, 2017, 173, 535-541.	4.2	6
41	The design of efficient carbonate interchange reactions with catechol carbonate. Green Chemistry, 2017, 19, 1519-1528.	4.6	26
42	Continuousâ€Flow <i>O</i> â€Alkylation of Biobased Derivatives with Dialkyl Carbonates in the Presence of Magnesium–Aluminium Hydrotalcites as Catalyst Precursors. ChemSusChem, 2017, 10, 1571-1583.	3.6	13
43	Continuous niobium phosphate catalysed Skraup reaction for quinoline synthesis from solketal. Green Chemistry, 2017, 19, 2439-2447.	4.6	34
44	Renewable Aromatics from Kraft Lignin with Molybdenumâ€Based Catalysts. ChemCatChem, 2017, 9, 2717-2726.	1.8	29
45	Towards life in hydrocarbons: aggregation behaviour of "reverse―surfactants in cyclohexane. RSC Advances, 2017, 7, 15337-15341.	1.7	10
46	Extractive Denitrogenation of Fuel Oils with Ionic Liquids: A Systematic Study. Energy & Fuels, 2017, 31, 2183-2189.	2.5	31
47	Metal Nanoparticles Stabilized in Ionic Liquids for Catalytic Multiphase Reactions. Current Organic Chemistry, 2017, 21, .	0.9	5
48	lonic liquids as transesterification catalysts: applications for the synthesis of linear and cyclic organic carbonates. Beilstein Journal of Organic Chemistry, 2016, 12, 1911-1924.	1.3	34
49	Synthesis of the Fatty Esters of Solketal and Glycerol-Formal: Biobased Specialty Chemicals. Molecules, 2016, 21, 170.	1.7	12
50	Towards a Rational Design of a Continuous-Flow Method for the Acetalization of Crude Glycerol: Scope and Limitations of Commercial Amberlyst 36 and AlF3·3H2O as Model Catalysts. Molecules, 2016, 21, 657.	1.7	27
51	Thermal (Catalyst-Free) Transesterification of Diols and Glycerol with Dimethyl Carbonate: A Flexible Reaction for Batch and Continuous-Flow Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 6144-6151.	3.2	47
52	Dimethylcarbonate-Assisted Ring-Opening of Biobased Valerolactones with Methanol. ACS Sustainable Chemistry and Engineering, 2016, 4, 6193-6199.	3.2	0
53	Microwave-assisted methylation of dihydroxybenzene derivatives with dimethyl carbonate. RSC Advances, 2016, 6, 58443-58451.	1.7	18
54	lonic liquid mediated deposition of ruthenium mirrors on glass under multiphase conditions. New Journal of Chemistry, 2016, 40, 1948-1952.	1.4	1

#	Article	IF	CITATIONS
55	Phosphonium salts and P-ylides. Organophosphorus Chemistry, 2016, , 132-169.	0.3	8
56	Changing the Action of Iron from Stoichiometric to Electrocatalytic in the Hydrogenation of Ketones in Aqueous Acidic Media. ChemSusChem, 2015, 8, 3712-3717.	3.6	2
57	Methyltriphenylphosphonium Methylcarbonate, an Allâ€Inâ€One Wittig Vinylation Reagent. ChemSusChem, 2015, 8, 3963-3966.	3.6	16
58	Phosphonium-based tetrakis dibenzoylmethane Eu(<scp>iii</scp>) and Sm(<scp>iii</scp>) complexes: synthesis, crystal structure and photoluminescence properties in a weakly coordinating phosphonium ionic liquid. RSC Advances, 2015, 5, 60898-60907.	1.7	22
59	Chapter 4. Phosphonium salts and P-ylides. Organophosphorus Chemistry, 2015, , 136-169.	0.3	4
60	Luminescent dansyl-based ionic liquids from amino acids and methylcarbonate onium salt precursors: synthesis and photobehaviour. Green Chemistry, 2015, 17, 538-550.	4.6	11
61	Upgrading of glycerol acetals by thermal catalyst-free transesterification of dialkyl carbonates under continuous-flow conditions. Green Chemistry, 2015, 17, 1008-1023.	4.6	17
62	Toward the Design of Halide―and Metalâ€Free Ionicâ€Liquid Catalysts for the Cycloaddition of CO ₂ to Epoxides. Asian Journal of Organic Chemistry, 2014, 3, 504-513.	1.3	25
63	Upgrading of Biobased Lactones with Dialkylcarbonates. ACS Sustainable Chemistry and Engineering, 2014, 2, 2131-2141.	3.2	27
64	Synthesis of dibenzyl carbonate: towards a sustainable catalytic approach. RSC Advances, 2014, 4, 1929-1937.	1.7	12
65	Carbonate phosphonium salts as catalysts for the transesterification of dialkyl carbonates with diols. The competition between cyclic carbonates and linear dicarbonate products. Organic and Biomolecular Chemistry, 2014, 12, 4143-4155.	1.5	51
66	Chapter 3. Phosphonium salts and P-ylides. Organophosphorus Chemistry, 2014, , 85-116.	0.3	4
67	A flexible Pinner preparation of orthoesters: the model case of trimethylorthobenzoate. Green Chemistry, 2013, 15, 2252.	4.6	28
68	Reactions of p-coumaryl alcohol model compounds with dimethyl carbonate. Towards the upgrading of lignin building blocks. Green Chemistry, 2013, 15, 3195.	4.6	44
69	Upgrade of Biomass-Derived Levulinic Acid via Ru/C-Catalyzed Hydrogenation to γ-Valerolactone in Aqueous–Organic–Ionic Liquids Multiphase Systems. ACS Sustainable Chemistry and Engineering, 2013, 1, 180-189.	3.2	66
70	Carbonate, acetate and phenolate phosphonium salts as catalysts in transesterification reactions for the synthesis of non-symmetric dialkyl carbonates. Organic and Biomolecular Chemistry, 2012, 10, 6569.	1.5	45
71	Continuous-flow alkene metathesis: the model reaction of 1-octene catalyzed by Re2O7/ \hat{I}^3 -Al2O3 with supercritical CO2 as a carrier. Green Chemistry, 2012, 14, 2727.	4.6	13
72	Methylcarbonate and Bicarbonate Phosphonium Salts as Catalysts for the Nitroaldol (Henry) Reaction. Journal of Organic Chemistry, 2012, 77, 1805-1811.	1.7	27

#	Article	IF	CITATIONS
73	Selective catalytic etherification of glycerol formal and solketal with dialkyl carbonates and K2CO3. Green Chemistry, 2012, 14, 188-200.	4.6	49
74	Cooperative nucleophilic–electrophilic organocatalysis by ionic liquids. Chemical Communications, 2012, 48, 5178.	2.2	24
75	Decarboxylation of dialkyl carbonates to dialkyl ethers over alkali metal-exchanged faujasites. Green Chemistry, 2011, 13, 863.	4.6	41
76	Eco-friendly synthesis of β-nitro ketones from conjugated enones: an important improvement of the Miyakoshi procedure. Green Chemistry, 2011, 13, 2026.	4.6	16
77	Kinetic parameter estimation of solventâ€free reactions monitored by ¹³ C NMR spectroscopy, a case study: Mono―and diâ€(hydroxy)ethylation of aniline with ethylene carbonate. International Journal of Chemical Kinetics, 2011, 43, 154-160.	1.0	10
78	The reaction of primary aromatic amines with alkylene carbonates for the selective synthesis of bis-N-(2-hydroxy)alkylanilines: the catalytic effect of phosphonium-based ionic liquids. Organic and Biomolecular Chemistry, 2010, 8, 5187.	1.5	46
79	Phosphonium nitrate ionic liquid catalysed electrophilic aromatic oxychlorination. Green Chemistry, 2010, 12, 1654.	4.6	10
80	Ionic Liquids Made with Dimethyl Carbonate: Solvents as well as Boosted Basic Catalysts for the Michael Reaction. Chemistry - A European Journal, 2009, 15, 12273-12282.	1.7	95
81	Self-Metathesis of 1-Octene Using Alumina-Supported Re2O7 in Supercritical CO2. Topics in Catalysis, 2009, 52, 315-321.	1.3	7
82	The reaction of glycerol carbonate with primary aromatic amines in the presence of Y- and X-faujasites: the synthesis of N-(2,3-dihydroxy)propyl anilines and the reaction mechanism. Green Chemistry, 2009, 11, 1161.	4.6	30
83	The metathesis of α-olefins over supported Re-catalysts in supercritical CO ₂ . Green Chemistry, 2009, 11, 229-238.	4.6	9
84	The methylation of benzyl-type alcohols with dimethyl carbonate in the presence of Y- and X-faujasites: selective synthesis of methyl ethers. Green Chemistry, 2008, 10, 73-79.	4.6	41
85	Green chemistry metrics: a comparative evaluation of dimethyl carbonate, methyl iodide, dimethyl sulfate and methanol as methylating agents. Green Chemistry, 2008, 10, 457.	4.6	180
86	Selective Nitroaldol Condensations over Heterogeneous Catalysts in the Presence of Supercritical Carbon Dioxide. Journal of Organic Chemistry, 2008, 73, 8520-8528.	1.7	14
87	Sequential coupling of the transesterification of cyclic carbonates with the selective N-methylation of anilines catalysed by faujasites. Green Chemistry, 2008, 10, 1068.	4.6	34
88	Green approaches to highly selective processes: Reactions of dimethyl carbonate over both zeolites and base catalysts. Pure and Applied Chemistry, 2007, 79, 1855-1867.	0.9	44
89	Chemoselective reactions of dimethyl carbonate catalysed by alkali metal exchanged faujasites: the case of indolyl carboxylic acids and indolyl-substituted alkyl carboxylic acids. Green Chemistry, 2007, 9, 463.	4.6	26
90	Formation and reaction of diazonium salts in a CO2/H2O system. Green Chemistry, 2007, 9, 777.	4.6	22

#	Article	IF	CITATIONS
91	Triphasic Liquid Systems for Improved Separations. Trioctylmethylammonium Chlorideâ€Immobilised Rhodium Trichloride: A Phosphineâ€Free Hydroformylation Catalytic System. Advanced Synthesis and Catalysis, 2007, 349, 1858-1862.	2.1	11
92	Synthesis of oxazolidinones in supercritical CO2 under heterogeneous catalysis. Tetrahedron Letters, 2007, 48, 2131-2134.	0.7	68
93	Triphasic liquid systems: generation and segregation of catalytically active Pd nanoparticles in an ammonium-based catalyst-philic phase. Chemical Communications, 2006, , 4480.	2.2	16
94	SelectiveN,N-Dimethylation of Primary Aromatic Amines with Methyl Alkyl Carbonates in the Presence of Phosphonium Salts. Journal of Organic Chemistry, 2006, 71, 5770-5773.	1.7	48
95	Highly Chemoselective Methylation and Esterification Reactions with Dimethyl Carbonate in the Presence of NaY Faujasite. The Case of Mercaptophenols, Mercaptobenzoic Acids, and Carboxylic Acids Bearing OH Substituents. Journal of Organic Chemistry, 2006, 71, 1464-1470.	1.7	65
96	Mono-N-methylation of Functionalized Anilines with Alkyl Methyl Carbonates over NaY Faujasites. 4. Kinetics and Selectivity. Journal of Organic Chemistry, 2005, 70, 2476-2485.	1.7	52
97	Dimethyl Carbonate in the Supercages of NaY Zeolite: The Role of Local Fields in Promoting Methylation and Carboxymethylation Activity. Angewandte Chemie - International Edition, 2005, 44, 4774-4777.	7.2	48
98	Synthesis of Methyl Carbamates from Primary Aliphatic Amines and Dimethyl Carbonate in Supercritical CO2:  Effects of Pressure and Cosolvents and Chemoselectivity. Journal of Organic Chemistry, 2005, 70, 2771-2777.	1.7	36
99	Continuous-flow, gas phase synthesis of 1-chlorobutane (1-bromobutane) from 1-butanol and aqueous HCl (HBr) over silica-supported quaternary phosphonium salt. Green Chemistry, 2005, 7, 464.	4.6	21
100	Comment on the paper "Zeolite-promoted selective mono-N-methylation of aniline with dimethyl carbonate―by T. Esakkidurai and Kasi Pitchumani, School of Chemistry, Madurai Kamaraj University, India [J. Mol. Catal. A: Chem. 218 (2004) 197–201]. Journal of Molecular Catalysis A, 2004, 222, 273-274.	4.8	2
101	Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. Part 3. Chemoselectivity Toward Mono-N-methylation ChemInform, 2004, 35, no.	0.1	0
102	The Reaction of Dialkyl Carbonates with o-Aminophenol Catalyzed by K2CO3: A Novel High-Yield Synthesis of N-Alkylbenzoxazol-2-ones ChemInform, 2004, 35, no.	0.1	0
103	Selective N,N-Dibenzylation of Primary Aliphatic Amines with Dibenzyl Carbonate in the Presence of Phosphonium Salts. Journal of Organic Chemistry, 2004, 69, 3953-3956.	1.7	23
104	Heck reaction catalyzed by Pd/C, in a triphasic—organic/Aliquat 336/aqueous—solvent system. Organic and Biomolecular Chemistry, 2004, 2, 2249-2252.	1.5	49
105	Selective N-methylation of primary aliphatic amines with dimethyl carbonate in the presence of alkali cation exchanged Y-faujasites. Tetrahedron Letters, 2003, 44, 8139-8142.	0.7	32
106	Reaction of Functionalized Anilines with Dimethyl Carbonate over NaY Faujasite. 3. Chemoselectivity toward Mono-N-methylation. Journal of Organic Chemistry, 2003, 68, 7374-7378.	1.7	76
107	Nucleophilic Displacements in Supercritical Carbon Dioxide under Phase-Transfer Catalysis Conditions. 2. Effect of Pressure and Kinetics. Journal of Organic Chemistry, 2003, 68, 4046-4051.	1.7	11
108	The Reaction of Dialkyl Carbonates witho-Aminophenol Catalysed by K2CO3: A Novel High-Yield Synthesis ofN-Alkylbenzoxazol-2-ones. Synthesis, 2003, 2003, 2872-2876.	1.2	9

#	Article	IF	CITATIONS
109	Mono-N-methylation of Primary Amines with Alkyl Methyl Carbonates over Y Faujasites. 2. Kinetics and Selectivity. Journal of Organic Chemistry, 2002, 67, 9238-9247.	1.7	51
110	The Chemistry of Dimethyl Carbonate. Accounts of Chemical Research, 2002, 35, 706-716.	7.6	985
111	The synthesis of alkyl aryl nitriles from N-(1-arylalkylidene)cyanomethylamines. Part 2. Mechanism. Perkin Transactions II RSC, 2002, , 1033-1037.	1.1	11
112	Multiphase heterogeneous catalytic enantioselective hydrogenation of acetophenone over cinchona-modified Pt/C. Journal of Molecular Catalysis A, 2002, 180, 169-175.	4.8	41
113	The synthesis of alkyl carbamates from primary aliphatic amines and dialkyl carbonates in supercritical carbon dioxide. Tetrahedron Letters, 2002, 43, 1217-1219.	0.7	67
114	Selective Mono-C-methylations of Arylacetonitriles and Arylacetates with Dimethylcarbonate:Â A Mechanistic Investigation. Journal of Organic Chemistry, 2002, 67, 1071-1077.	1.7	41
115	Reaction of Primary Aromatic Amines with Alkyl Carbonates over NaY Faujasite:Â A Convenient and Selective Access to Mono-N-alkyl Anilines. Journal of Organic Chemistry, 2001, 66, 677-680.	1.7	64
116	Dimethylcarbonate for eco-friendly methylation reactions. Chemosphere, 2001, 43, 115-121.	4.2	83
117	Nucleophilic Displacements in Supercritical Carbon Dioxide Using Silica-Supported Phase-Transfer Agents. Journal of Organic Chemistry, 2001, 66, 4047-4049.	1.7	20
118	From Development to Industrialization of an IAPACÂ $^{\odot}$ Marine Outboard D.I. 2-Stroke Engine. , 2001, , .		7
119	Peptide anchored Langmuir–Blodgett films of a fullerene amphiphile. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 190, 295-303.	2.3	7
120	A mild catalytic detoxification method for PCDDs and PCDFs. Applied Catalysis B: Environmental, 2001, 32, L1-L7.	10.8	47
121	Alkyl Methyl Carbonates as Methylating Agents. The O-Methylation of Phenols. Synlett, 2000, 2000, 272-274.	1.0	35
122	Dimethylcarbonate as a Green Reagent. ACS Symposium Series, 2000, , 87-99.	0.5	19
123	Efficient synthesis of N-alkylformimidoyl cyanides. Tetrahedron Letters, 1999, 40, 7573-7576.	0.7	10
124	A Continuous-Flow O-Methylation of Phenols with Dimethyl Carbonate in a Continuously Fed Stirred Tank Reactor. Industrial & Engineering Chemistry Research, 1999, 38, 2075-2079.	1.8	61
125	The synthesis of alkyl aryl nitriles from N-(1-arylalkylidene)cyanomethyl amines: some mechanistic conclusions. Journal of the Chemical Society Perkin Transactions II, 1999, , 2485-2492.	0.9	6
126	Synthesis Pf Alkylaryl- and Diaryxnitriles From Ketones via N-(l-Aryxalkylldene)-Cyanomethyl Amines. Synthetic Communications, 1999, 29, 1561-1569.	1.1	10

#	Article	IF	CITATIONS
127	Hydrodehalogenation of Halogenated Aryl Ketones under Multiphase Conditions. 6. pH Effect on the Chemoselectivity and Preliminary Mechanistic Investigation. Journal of Organic Chemistry, 1999, 64, 3934-3939.	1.7	21
128	Trimethyl Orthoformate as a Highly Selective Mono-C-Methylating Agent for Arylacetonitriles. Journal of Organic Chemistry, 1998, 63, 9540-9544.	1.7	16
129	Hydrodehalogenation of Halogenated Aryl Ketones under Multiphase Conditions. 5. Chemoselectivity toward Aryl Alcohols over a Pt/C Catalyst. Journal of Organic Chemistry, 1998, 63, 3266-3271.	1.7	24
130	Selective mono-N-methylation of primary aromatic amines by dimethyl carbonate over faujasite X- and Y-type zeolites. Journal of the Chemical Society Perkin Transactions 1, 1997, , 1041-1046.	0.9	74
131	Dimethyl Carbonate as a Methylating Agent. The Selective Mono-C-methylation of Alkyl Aryl Sulfones. Journal of Chemical Research Synopses, 1997, , 448.	0.3	19
132	Selective Mono-Methylation of Arylacetonitriles and Methyl Arylacetates by Dimethylcarbonate. ACS Symposium Series, 1996, , 81-91.	0.5	11
133	The use of dialkyl carbonates for safe and highly selective alkylations of methyleneâ€active compounds. A process without waste production. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 256-260.	0.0	4
134	Synthesis of Substituted Phenyl Ketones via Pd-Catalysed hydrodechlorination of Their Polychlorinated Derivatives. Synthesis, 1996, 1996, 1109-1114.	1.2	12
135	Selectivity in hydrodehalogenation of polychloro- and polybromobenzenes under multiphase conditions. Journal of Molecular Catalysis A, 1995, 96, 301-309.	4.8	49
136	A new synthesis of 2-aryloxypropionic acids derivatives via selective mono-c-methylation of methyl aryloxyacetates and aryloxyacetonitriles with dimethyl carbonate. Tetrahedron, 1995, 51, 11573-11580.	1.0	39
137	Facile Hydrodehalogenation with H2 and Pd/C Catalyst under Multiphase Conditions. 3. Selective Removal of Halogen from Functionalized Aryl Ketones. 4. Aryl Halide-Promoted Reduction of Benzyl Alcohols to Alkanes. Journal of Organic Chemistry, 1995, 60, 2430-2435.	1.7	55
138	A Simple One-Pot Synthesis of Functionalized Ketimines from Ketones and Amine Hydrochloride Salts. Synthetic Communications, 1995, 25, 369-378.	1.1	16
139	Selective mono-benzylation of methylene active compounds with dibenzyl carbonate: benzylation of phenol. Journal of the Chemical Society Perkin Transactions 1, 1995, , 1889.	0.9	18
140	Pd-Fe/SiO2 Catalysts in the Hydrogenation of 2,4-Dinitrotoluene. Journal of Catalysis, 1994, 150, 356-367.	3.1	64
141	Selective mono-methylation of arylacetonitriles and methyl arylacetates by dimethyl carbonate. Journal of the Chemical Society Perkin Transactions 1, 1994, , 1323.	0.9	61
142	Facile Hydrodehalogenation with H2 and Pd/C Catalyst under Multiphase Conditions. Part 2. Selectivity and Kinetics. Journal of Organic Chemistry, 1994, 59, 3830-3837.	1.7	94
143	Reaction of oximes with dimethyl carbonate: a new entry to 3-methyl-4,5-disubstituted-4-oxazolin-2-ones. Journal of Organic Chemistry, 1993, 58, 5765-5770.	1.7	46
144	Facile hydrodehalogenation with hydrogen and palladium/carbon catalyst under multiphase conditions. Journal of Organic Chemistry, 1993, 58, 5256-5260.	1.7	95

#	Article	IF	CITATIONS
145	Hydrodehalogenation of polychlorinated aromatic halides by hypophosphite with Pd/C catalyst under multiphase conditions. Journal of the Chemical Society Perkin Transactions 1, 1993, , 529.	0.9	50
146	Esters and orthoesters as alkylating agents at high temperature. Applications to continuous-flow processes. Journal of the Chemical Society Perkin Transactions II, 1992, , 519.	0.9	21
147	Hydrodehalogenation of polychlorinated aromatics with Pd/C catalyst under multiphase conditions Rendiconti Lincei, 1992, 3, 283-294.	1.0	2
148	The influence of a second metal component (Cu, Sn, Fe) on Pd/SiO2 activity in the hydrogenation of 2,4-dinitrotoluene. Catalysis Letters, 1991, 10, 215-223.	1.4	78
149	Improved Selectivity in the Chloromethylation of Alkylbenzenes in the Presence of Quaternary Ammonium Salts. Synthesis, 1991, 1991, 1003-1004.	1.2	12
150	Dimethyl Carbonate as a Green Reagent. , 0, , 77-102.		10
151	Phosphonium salts and P-ylides. Organophosphorus Chemistry, 0, , 157-211.	0.3	1
152	Phosphonium salts and P-ylides. Organophosphorus Chemistry, 0, , 139-182.	0.3	1