Sergio Murgia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174441/publications.pdf

Version: 2024-02-01

172457 243625 2,422 88 29 44 citations g-index h-index papers 89 89 89 2892 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A Selective, Nontoxic, OFF–ON Fluorescent Molecular Sensor Based on 8â€Hydroxyquinoline for Probing Cd ²⁺ in Living Cells. Chemistry - A European Journal, 2010, 16, 919-930.	3.3	129
2	Nanoparticles from Lipid-Based Liquid Crystals: Emulsifier Influence on Morphology and Cytotoxicity. Journal of Physical Chemistry B, 2010, 114, 3518-3525.	2.6	100
3	Cancer-Cell-Targeted Theranostic Cubosomes. Langmuir, 2014, 30, 6228-6236.	3.5	95
4	Drug-Loaded Fluorescent Cubosomes: Versatile Nanoparticles for Potential Theranostic Applications. Langmuir, 2013, 29, 6673-6679.	3.5	94
5	Docetaxel-Loaded Fluorescent Liquid-Crystalline Nanoparticles for Cancer Theranostics. Langmuir, 2015, 31, 9566-9575.	3 . 5	70
6	Biocompatible Lecithin Organogels:Â Structure and Phase Equilibria. Langmuir, 2005, 21, 140-148.	3. 5	64
7	Cubosome formulations stabilized by a dansyl-conjugated block copolymer for possible nanomedicine applications. Colloids and Surfaces B: Biointerfaces, 2015, 129, 87-94.	5.0	62
8	Polymer-free cubosomes for simultaneous bioimaging and photodynamic action of photosensitizers in melanoma skin cancer cells. Journal of Colloid and Interface Science, 2018, 522, 163-173.	9.4	60
9	Quantitative characterization of phospholipids in milk fat via 31P NMR using a monophasic solvent mixture. Lipids, 2003, 38, 585-591.	1.7	59
10	Iron(III) and aluminum(III) complexes with hydroxypyrone ligands aimed to design kojic acid derivatives with new perspectives. Journal of Inorganic Biochemistry, 2010, 104, 560-569.	3. 5	55
11	In Vitro Release of Lysozyme from Gelatin Microspheres: Effect of Cross-linking Agents and Thermoreversible Gel as Suspending Medium. Biomacromolecules, 2011, 12, 3186-3193.	5 . 4	53
12	Recent advances of non-lamellar lyotropic liquid crystalline nanoparticles in nanomedicine. Current Opinion in Colloid and Interface Science, 2020, 48, 28-39.	7.4	52
13	Cubosomes stabilized by a polyphosphoester-analog of Pluronic F127 with reduced cytotoxicity. Journal of Colloid and Interface Science, 2020, 580, 286-297.	9.4	49
14	Monoolein-based cubosomes affect lipid profile in HeLa cells. Chemistry and Physics of Lipids, 2015, 191, 96-105.	3.2	47
15	A new family of bis-ureidic receptors for pyrophosphate optical sensing. Organic and Biomolecular Chemistry, 2013, 11, 2445.	2.8	46
16	Effects of monoolein-based cubosome formulations on lipid droplets and mitochondria of HeLa cells. Toxicology Research, 2015, 4, 1025-1036.	2.1	46
17	Kojic acid derivatives as powerful chelators for iron(iii) and aluminium(iii). Dalton Transactions, 2011, 40, 5984.	3.3	44
18	Cubosomes for <i>iin vivo </i> fluorescence lifetime imaging. Nanotechnology, 2017, 28, 055102.	2.6	44

#	Article	IF	CITATIONS
19	Impact of branching on the viscoelasticity of wormlike reverse micelles. Soft Matter, 2012, 8, 10941.	2.7	43
20	Characterization of the Solutol® HS15/water phase diagram and the impact of the \hat{i} 9-tetrahydrocannabinol solubilization. Journal of Colloid and Interface Science, 2013, 390, 129-136.	9.4	39
21	Physicochemical, Cytotoxic, and Dermal Release Features of a Novel Cationic Liposome Nanocarrier. Advanced Healthcare Materials, 2013, 2, 692-701.	7.6	38
22	Acyl migration and hydrolysis in monoolein-based systems. , 2002, , 41-46.		35
23	Faceted phospholipid vesicles tailored for the delivery of Santolina insularis essential oil to the skin. Colloids and Surfaces B: Biointerfaces, 2015, 132, 185-193.	5.0	35
24	Mesoscopic Structure in Mixtures of Water and 1-Butyl-3-methyl imidazolium tetrafluoborate: A Multinuclear NMR Study. Journal of Solution Chemistry, 2013, 42, 1111-1122.	1.2	34
25	Solvatochromic fluorescent BODIPY derivative as imaging agent in camptothecin loaded hexosomes for possible theranostic applications. RSC Advances, 2015, 5, 23443-23449.	3.6	34
26	Does the Schulman's Titration of Microemulsions Really Provide Meaningful Parameters?. Langmuir, 2004, 20, 7381-7384.	3. 5	33
27	Theranostic hexosomes for cancer treatments: an in vitro study. New Journal of Chemistry, 2017, 41, 1558-1565.	2.8	32
28	Aerosol-OT Forms Oil-in-Water Spherical Micelles in the Presence of the Ionic Liquid bmimBF ₄ . Journal of Physical Chemistry B, 2009, 113, 9216-9225.	2.6	31
29	Nucleotide Recognition and Phosphate Linkage Hydrolysis at a Lipid Cubic Interface. Journal of the American Chemical Society, 2010, 132, 16176-16184.	13.7	31
30	Physicochemical and rheological properties of a novel monoolein-based vesicle gel. Soft Matter, 2013, 9, 921-928.	2.7	30
31	NMR Investigation on Melaleuca alternifolia Essential Oil Dispersed in the Monoolein Aqueous System:  Phase Behavior and Dynamics. Langmuir, 2002, 18, 7916-7922.	3.5	29
32	Biocompatible Lipidic Formulations:Â Phase Behavior and Microstructure. Langmuir, 2004, 20, 5241-5246.	3. 5	29
33	Size Polydispersity Determination in Emulsion Systems by Free Diffusion Measurements via PFG-NMR. Journal of Physical Chemistry B, 2004, 108, 18472-18478.	2.6	29
34	From self-assembly fundamental knowledge to nanomedicine developments. Advances in Colloid and Interface Science, 2014, 205, 48-67.	14.7	29
35	Monoolein based liquid crystals to form long-term stable emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2003, 228, 57-63.	4.7	27
36	Hofmeister effects in cationic microemulsions. Current Opinion in Colloid and Interface Science, 2004, 9, 102-106.	7.4	27

3

#	Article	IF	CITATIONS
37	Hybrid Theranostic Cubosomes for Efficient NIR-Induced Photodynamic Therapy. ACS Nano, 2022, 16, 5427-5438.	14.6	27
38	Evidence for the role of hydrophobic forces on the interactions of nucleotide-monophosphates with cationic liposomes. Journal of Colloid and Interface Science, 2013, 410, 146-151.	9.4	26
39	Potential of curcumin-loaded cubosomes for topical treatment of cervical cancer. Journal of Colloid and Interface Science, 2022, 620, 419-430.	9.4	26
40	The impact of alkanes on the structure of Triton X100 micelles. RSC Advances, 2016, 6, 825-836.	3.6	25
41	Improving Dermal Delivery of Rose Bengal by Deformable Lipid Nanovesicles for Topical Treatment of Melanoma. Molecular Pharmaceutics, 2021, 18, 4046-4057.	4.6	25
42	Biocompatible Lipid-Based Liquid Crystals and Emulsions. Journal of Physical Chemistry B, 2006, 110, 25994-26000.	2.6	24
43	Addition of hydrophilic and lipophilic compounds of biological relevance to the monoolein/water system II $\hat{a} \in "13C$ NMR relaxation study. Chemistry and Physics of Lipids, 2001, 110, 11-17.	3.2	22
44	Branched alkyldimethylamine oxide surfactants: An effective strategy for the design of high concentration/low viscosity surfactant formulations. Journal of Colloid and Interface Science, 2019, 552, 448-463.	9.4	22
45	Structural, rheological and dynamics insights of hydroxypropyl guar gel-like systems. Colloids and Surfaces B: Biointerfaces, 2018, 168, 178-186.	5.0	21
46	The effect of diethylene glycol monoethyl ether on skin penetration ability of diclofenac acid nanosuspensions. Colloids and Surfaces B: Biointerfaces, 2018, 162, 8-15.	5.0	21
47	Aerosol-OT in water forms fully-branched cylindrical direct micelles in the presence of the ionic liquid 1-butyl-3-methylimidazolium bromide. Physical Chemistry Chemical Physics, 2011, 13, 9238.	2.8	20
48	Tuning lipid structure by bile salts: Hexosomes for topical administration of catechin. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111564.	5.0	20
49	Orientation and Specific Interactions of Nucleotides and Nucleolipids Inside Monoolein-Based Liquid Crystals. Journal of Physical Chemistry B, 2009, 113, 9205-9215.	2.6	18
50	Highly stable ionic liquid-in-water emulsions as a new class of fluorescent sensors for metal ions: the case study of Fe ³⁺ sensing. RSC Advances, 2015, 5, 37385-37391.	3.6	18
51	Multifunctional cubic liquid crystalline nanoparticles for chemo- and photodynamic synergistic cancer therapy. Photochemical and Photobiological Sciences, 2020, 19, 674-680.	2.9	18
52	Quantification of Specific Anion Binding to Non-Ionic Triton X-100 Micelles. Langmuir, 2012, 28, 1283-1289.	3.5	17
53	Ball-milling and cheap reagents breathe green life into the one hundred-year-old Hofmann reaction. Organic Chemistry Frontiers, 2018, 5, 531-538.	4.5	17
54	Fluorescent squaramide ligands for cellular imaging and their encapsulation in cubosomes. New Journal of Chemistry, 2019, 43, 10336-10342.	2.8	17

#	Article	IF	CITATIONS
55	Binding isotherms of surfactants used in detergent formulations to bovine serum albumin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124801.	4.7	17
56	Oligonucleotides and polynucleotides condensation onto liposome surface: Effects of the base and of the nucleotide length. Colloids and Surfaces B: Biointerfaces, 2013, 104, 239-244.	5.0	16
57	An OFF–ON chemosensor for biological and environmental applications: sensing Cd2+ in water using catanionic vesicles and in living cells. Organic and Biomolecular Chemistry, 2013, 11, 7751.	2.8	16
58	Tuning the Encapsulation of Simple Fragrances with an Amphiphilic Graft Copolymer. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28808-28818.	8.0	16
59	Molecular recognition and controlled release in drug delivery systems based on nanostructured lipid surfactants. Journal of Physics Condensed Matter, 2006, 18, S2203-S2220.	1.8	15
60	Interaction of Sodium Ions with Cationic Surfactant Interfaces. Chemistry - A European Journal, 2006, 12, 7889-7898.	3.3	15
61	3-hydroxycoumarin loaded vesicles for recombinant human tyrosinase inhibition in topical applications. Colloids and Surfaces B: Biointerfaces, 2018, 171, 675-681.	5.0	15
62	Interconnected Networks: Structural and Dynamic Characterization of Aqueous Dispersions of Dioctanoylphosphatidylcholine. Journal of Physical Chemistry B, 2008, 112, 12625-12634.	2.6	14
63	Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study. Biomedical Microdevices, 2016, 18, 67.	2.8	13
64	Lipid based liquid-crystalline stabilized formulations for the sustained release of bioactive hydrophilic molecules. Colloids and Surfaces B: Biointerfaces, 2018, 168, 35-42.	5.0	12
65	Rational Design of Sustainable Liquid Microcapsules for Spontaneous Fragrance Encapsulation. Angewandte Chemie - International Edition, 2021, 60, 23849-23857.	13.8	12
66	In vitro imaging of \hat{l}^2 -cells using fluorescent cubic bicontinuous liquid crystalline nanoparticles. RSC Advances, 2016, 6, 62119-62127.	3.6	11
67	Novel mannitol based non-ionic surfactants from biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2004, 27, 139-146.	1.8	10
68	Mixed micelles of homologous perfluoropolyether anionic surfactants in water. Journal of Fluorine Chemistry, 2004, 125, 261-269.	1.7	10
69	Bicontinuous cubic liquid crystalline phase nanoparticles stabilized by softwood hemicellulose. Colloids and Surfaces B: Biointerfaces, 2021, 203, 111753.	5.0	10
70	Interference of Some Tryptophan Metabolites in the Formation of Melanin In Vitro. Pigment Cell & Melanoma Research, 2004, 17, 135-141.	3.6	9
71	Oxidation-proof microemulsions: Microstructure and reactivity in the presence of dioxiranes. Journal of Colloid and Interface Science, 2013, 408, 138-144.	9.4	9
72	Liquid-Crystal Based Formulations for Topical Drug Delivery. Journal of Dispersion Science and Technology, 2013, 34, 1286-1293.	2.4	7

#	Article	IF	CITATIONS
73	Reaction of imidazoline-2-selone derivatives with mesityltellurenyl iodide: a unique example of a 3c-4e Seâ†'Teâ†Se three-body system embedding a tellurenyl cation. New Journal of Chemistry, 2019, 43, 11821-11831.	2.8	7
74	On the role of a coumarin derivative for sensing applications: Nucleotide identification using a micellar system. Journal of Colloid and Interface Science, 2016, 477, 8-15.	9.4	6
75	Surface-modified nanoerythrosomes for potential optical imaging diagnostics. Journal of Colloid and Interface Science, 2021, 582, 246-253.	9.4	6
76	Effect of tail branching on the phase behavior and the rheological properties of amine oxide/ethoxysulfate surfactant mixtures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126091.	4.7	6
77	Halogenated isophthalamides and dipicolineamides: the role of the halogen substituents in the anion binding properties. Dalton Transactions, 2020, 49, 9231-9238.	3.3	5
78	Kojic acid derivatives as double face ligands for metal and phosphate ions Journal of Inorganic Biochemistry, 2021, 222, 111520.	3.5	5
79	Towards long-acting adrenaline for cardiopulmonary resuscitation: Production and characterization of a liposomal formulation. International Journal of Pharmaceutics, 2019, 557, 105-111.	5.2	4
80	Rational Design of Sustainable Liquid Microcapsules for Spontaneous Fragrance Encapsulation. Angewandte Chemie, 0, , .	2.0	4
81	A selective cellulose/hemicellulose green solvents extraction from buckwheat chaff. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100094.	2.6	4
82	A pheromone analogue affects the evaporation rate of (+)â€disparlure in <i>Lymantria dispar</i> . Pest Management Science, 2014, 70, 674-681.	3.4	3
83	Fluorescent lactose-derived catanionic aggregates: synthesis, characterisation and potential use as antibacterial agents. RSC Advances, 2016, 6, 23340-23344.	3.6	2
84	Lipid vesicular gels for topical administration of antioxidants. Colloids and Surfaces B: Biointerfaces, 2022, 213, 112388.	5.0	2
85	Study of the DNA binding mechanism and <i>in vitro</i> activity against cancer cells of iron(<scp>iii</scp>) and aluminium(<scp>iii</scp>) kojic acid derivative complexes. Dalton Transactions, 2022, , .	3.3	2
86	Bioimaging Applications of Non-Lamellar Liquid Crystalline Nanoparticles. Journal of Nanoscience and Nanotechnology, 2021, 21, 2742-2759.	0.9	1
87	<i>In Vitro</i> Evaluation of Nanoerythrosome Cytotoxicity and Uptake in Pancreatic Endothelial Cells: Implications for β-Cell Imaging Applications. Langmuir, 2022, 38, 3403-3411.	3.5	О
88	Chapter 3. Reverse Wormlike Micelles: A Special Focus on Nuclear Magnetic Resonance Investigations. , 0, , 31-62.		0