Masashi Miura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7174106/publications.pdf

Version: 2024-02-01

759233 552781 33 755 12 26 citations h-index g-index papers 33 33 33 670 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Designing high-performance superconductors with nanoparticle inclusions: Comparisons to strong pinning theory. APL Materials, 2021, 9, .	5.1	1
2	A Superconducting Praseodymium Nickelate with Infinite Layer Structure. Nano Letters, 2020, 20, 5735-5740.	9.1	172
3	High Performance Coated Conductors Fabricated by UTOC-MOD Process. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	2
4	Enhanced critical current density in BaFe2(Aso.66P0.33)2 nanocomposite superconducting films. Superconductor Science and Technology, 2019, 32, 064005.	3.5	7
5	Longitudinal Magnetic Field Effects on (Y,Gd)Ba ₂ Cu ₃ O _{7â~Î} Coated Conductor With BaHfO ₃ Nanoparticles Fabricated by UTOC-MOD Method. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-5.	1.7	4
6	Enhancement of the in-field critical current density of trifluoroacetate metal organic deposition derived (Y _{0.77} Gd _{0.23})Ba ₂ Cu ₃ O _y films by annealing of CeO ₂ buffered <i>R</i> -Al ₂ O ₃ substrates. Japanese Journal of Applied Physics, 2019, 58, 053001.	1.5	2
7	Dynamics and Critical Currents in Fast Superconducting Vortices at High pulsed Magnetic Fields. Physical Review Applied, 2019, 11, .	3.8	7
8	Trifluoroacetate metal organic deposition derived $(Y < sub > 0.77 < sub > 0.4 < sub > 0.23 < sub > 0.23$	1.5	5
9	Accelerated vortex dynamics across the magnetic 3D-to-2D crossover in disordered superconductors. Npj Quantum Materials, 2018, 3, .	5.2	4
10	Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition. NPG Asia Materials, 2017, 9, e447-e447.	7.9	57
11	Enhanced In-field Properties in BaFe ₂ (As ₁₋ <i>_x</i> P <i>_x</i>) _{)₂ Thin Films with BaZrO₃ Nanoparticles. TEION KOGAKU (Journal of Cryogenics and Superconductivity) Tj ETQq1}	1 ⁰ 0 ¹ 78431	4 rgBT /Ove
12	Upward shift of the vortex solid phase in high-temperature-superconducting wires through high density nanoparticle addition. Scientific Reports, 2016, 6, 20436.	3.3	32
13	Strongly enhanced flux pinning in one-step deposition of BaFe2(As0.66P0.33)2 superconductor films with uniformly dispersed BaZrO3 nanoparticles. Nature Communications, 2013, 4, 2499.	12.8	83
14	Anisotropy and Superconducting Properties of BaFe $<$ sub $>$ 2 $<$ sub $>$ 1- $<$ i>sub $>$ 1- $<$ i>sub $>$ P $<$ sub $>$ 0 $<$ i>sub $>$ 2 $<$ sub $>$ 5ilms with Various Phosphorus Contents. Applied Physics Express, 2013, 6, 093101.	2.4	23
15	Influence of nanoparticles on critical current properties in TFA-MOD processed YGdBCO coated conductor. Journal of Physics: Conference Series, 2010, 234, 022018.	0.4	O
16	Flux pinning properties of TFA-MOD (Y,Gd)Ba2Cu3Oxtapes with BaZrO3nanoparticles. Superconductor Science and Technology, 2010, 23, 014006.	3.5	20
17	Transmission electron microscopy study of a Y1-xSmxBa2Cu3Oy-coated conductor containing BaZrO3 particles. Journal of Electron Microscopy, 2010, 59, S101-S105.	0.9	4
18	Magnetic Field Dependence of Critical Current and Microstructure in TFA-MOD $m Y_{1-x}$ m Sm $_{x}$ Magnetic Field Dependence of Critical Current and Microstructure in TFA-MOD $m Y_{1-x}$ m Sm $_{x}$ Magnetic Field Dependence of Critical Current and Microstructure in TFA-MOD $m Y_{1-x}$ magnetic Field Superconductivity, 2009, 19, 3275-3278.	1.7	12

#	Article	IF	CITATIONS
19	Use of Reel-to-Reel System to Increase Deposition Rate and Enhance <1>1 1 _c in PLD-GdBa ₂ Cu ₃ O _{<1>y<!--1-->} Coated Conductors. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2008, 43, 150-157.	0.1	1
20	Enhanced Critical Current under a Magnetic Field in Sm1+xB2-xCu3OyThick Films Prepared Using Low-temperature Growth Technique. Japanese Journal of Applied Physics, 2007, 46, L807-L809.	1.5	4
21	c-axis correlated pinning behavior near the irreversibility fields. Applied Physics Letters, 2007, 90, 122501.	3.3	26
22	Magnetic Field Dependence of Critical Current Density and Microstructure in ${m Sm}_{1+x}{m Ba}_{2-x}{m Cu}_{3}{m O}_{y}$ Films on Metallic Substrates. IEEE Transactions on Applied Superconductivity, 2007, 17, 3247-3250.	1.7	13
23	Irreversibility Field and c-Axis Correlated Pinning in High-\$J_{c}\$ SmBCO Films. IEEE Transactions on Applied Superconductivity, 2007, 17, 3656-3659.	1.7	2
24	Addition of low-Tc nanoparticles dispersions to enhance flux pinning of Sm1+xBa2â^'xCu3Oy films. Physica C: Superconductivity and Its Applications, 2006, 445-448, 643-647.	1.2	12
25	Comparative study of carrier concentration and reciprocal space mapping in SmBa2Cu3Oy thin films with high critical current density. Physica C: Superconductivity and Its Applications, 2006, 445-448, 689-693.	1.2	4
26	Enhancement of Flux-Pinning in Epitaxial Sm1+xBa2-xCu3OyFilms by Introduction of Low-TcNanoparticles. Japanese Journal of Applied Physics, 2006, 45, L11-L13.	1.5	46
27	Dislocation Density and Critical Current Density of Sm1+xBa2-xCu3OyFilms Prepared by Various Fabrication Processes. Japanese Journal of Applied Physics, 2006, 45, L701-L704.	1.5	30
28	In-plane alignment and superconducting properties in high-Jc Sm1+xBa2â^'xCu3O6+δ thin films. Physica C: Superconductivity and Its Applications, 2005, 426-431, 985-989.	1.2	14
29	High-Critical-Current-Density SmBa2Cu3O7-xFilms Induced by Surface Nanoparticle. Japanese Journal of Applied Physics, 2005, 44, L546-L548.	1.5	51
30	Hetero-Epitaxial Growth of CeO2Films on MgO Substrates. Japanese Journal of Applied Physics, 2005, 44, L318-L321.	1.5	9
31	Enhancement of Flux Pinning in Y _{1-<i>>x</i>} 5m _{<i>x</i>} Ba _{1.5} Cu ₃ O _{<i>y</i>} Coate Conductors with Nanoparticles. Applied Physics Express, 0, 1, 051701.	e d. 4	54
32	Effect of <i><c i="">-Axis-Correlated Disorders on the Vortex Diagram of the Pinning State. Applied Physics Express, 0, 1, 031703.</c></i>	2.4	5
33	Rare Earth Substitution Effects and Magnetic Field Dependence of Critical Current in Y _{1-<i>>x</i>} RE _{<i>x</i>} Ba ₂ Cu ₃ O _{<i>y</i>} Coated Conductors with Nanoparticles (RE=Sm, Gd). Applied Physics Express, 0, 2, 023002.	2.4	48