
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7173980/publications.pdf Version: 2024-02-01

ΙΟΝΗΚΛΛ

#	Article	IF	CITATIONS
1	Escaping the nocturnal bottleneck, and the evolution of the dorsal and ventral streams of visual processing in primates. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210293.	4.0	15
2	Corticocuneate projections are altered after spinal cord dorsal column lesions in New World monkeys. Journal of Comparative Neurology, 2021, 529, 1669-1702.	1.6	3
3	Using Electrical Stimulation to Explore and Augment the Functions of Parietal-Frontal Cortical Networks in Primates. Contemporary Clinical Neuroscience, 2021, , 3-18.	0.3	2
4	Cortical connections of the functional domain for climbing or running in posterior parietal cortex of galagos. Journal of Comparative Neurology, 2021, 529, 2789-2812.	1.6	5
5	Longitudinal fMRI measures of cortical reactivation and hand use with and without training after sensory loss in primates. NeuroImage, 2021, 236, 118026.	4.2	5
6	Interactions within and between parallel parietal-frontal networks involved in complex motor behaviors in prosimian galagos and a squirrel monkey. Journal of Neurophysiology, 2020, 123, 34-56.	1.8	11
7	The Evolution of the Pulvinar Complex in Primates and Its Role in the Dorsal and Ventral Streams of Cortical Processing. Vision (Switzerland), 2020, 4, 3.	1.2	38
8	The postnatal development of MT, V1, LGN, pulvinar and SC in prosimian galagos (<scp><i>Otolemur) Tj ETQq0 (</i></scp>	0 Q rg BT /0 1.0	Dvgrlock 10 T
9	Similar Microglial Cell Densities across Brain Structures and Mammalian Species: Implications for Brain Tissue Function. Journal of Neuroscience, 2020, 40, 4622-4643.	3.6	60
10	Comparative Functional Anatomy of Marmoset Brains. ILAR Journal, 2020, 61, 260-273.	1.8	8
11	The Somatosensory System of Primates. , 2020, , 180-197.		1
12	Cortical and Subcortical Plasticity After Sensory Loss in the Somatosensory System of Primates. , 2020, , 399-418.		1
13	Cortical projections to the two retinotopic maps of primate pulvinar are distinct. Journal of Comparative Neurology, 2019, 527, 577-588.	1.6	20

14	White matter volume and white/gray matter ratio in mammalian species as a consequence of the universal scaling of cortical folding. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15253-15261.	7.1	45
15	The sensory thalamus and visual midbrain in mouse lemurs. Journal of Comparative Neurology, 2019, 527, 2599-2611.	1.6	5
16	The origin and evolution of neocortex: From early mammals to modern humans. Progress in Brain Research, 2019, 250, 61-81.	1.4	26
17	Cortical connections of area 2 and posterior parietal area 5 in macaque monkeys. Journal of Comparative Neurology, 2019, 527, 718-737.	1.6	27
18	Reorganization of Higher-Order Somatosensory Cortex After Sensory Loss from Hand in Squirrel Monkeys. Cerebral Cortex, 2019, 29, 4347-4365.	2.9	6

#	Article	IF	CITATIONS
19	Remembering Vivien Casagrande. Journal of Comparative Neurology, 2019, 527, 503-504.	1.6	Ο
20	Corticocortical projections to area 1 in squirrel monkeys (<i>Saimiri sciureus)</i> . European Journal of Neuroscience, 2019, 49, 1024-1040.	2.6	13
21	Architectonic features and relative locations of primary sensory and related areas of neocortex in mouse lemurs. Journal of Comparative Neurology, 2019, 527, 625-639.	1.6	13
22	Cortical projections to the superior colliculus in grey squirrels (<i>Sciurus carolinensis</i>). European Journal of Neuroscience, 2019, 49, 1008-1023.	2.6	10
23	Second-order spinal cord pathway contributes to cortical responses after long recoveries from dorsal column injury in squirrel monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4258-4263.	7.1	18
24	Frontal eye field in prosimian galagos: Intracortical microstimulation and tracing studies. Journal of Comparative Neurology, 2018, 526, 626-652.	1.6	12
25	Longâ€term histological changes in the macaque primary visual cortex and the lateral geniculate nucleus after monocular deprivation produced by early restricted retinal lesions and diffuser induced form deprivation. Journal of Comparative Neurology, 2018, 526, 2955-2972.	1.6	7
26	The evolution of parietal cortex in primates. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 151, 31-52.	1.8	23
27	The Skinny on Brains: Size Matters. Cerebrum: the Dana Forum on Brain Science, 2018, 2018, .	0.1	Ο
28	<i>câ€FOS</i> expression in the visual system of tree shrews after monocular inactivation. Journal of Comparative Neurology, 2017, 525, 151-165.	1.6	5
29	Optic nerve, superior colliculus, visual thalamus, and primary visual cortex of the northern elephant seal (<i>Mirounga angustirostris</i>) and California sea lion (<i>Zalophus californianus</i>). Journal of Comparative Neurology, 2017, 525, 2109-2132.	1.6	13
30	The Evolution of Mammalian Brains from Early Mammals to Present-Day Primates. , 2017, , 59-80.		10
31	What Makes the Human Brain Special: Key Features of Brain and Neocortex. Springer Series in Cognitive and Neural Systems, 2017, , 3-22.	0.1	9
32	The evolution and functions of nuclei of the visual pulvinar in primates. Journal of Comparative Neurology, 2017, 525, 3207-3226.	1.6	82
33	Distributions of Cells and Neurons across the Cortical Sheet in Old World Macaques. Brain, Behavior and Evolution, 2016, 88, 1-13.	1.7	32
34	Evolution of posterior parietal cortex and parietalâ€frontal networks for specific actions in primates. Journal of Comparative Neurology, 2016, 524, 595-608.	1.6	94
35	Corticalization of motor control in humans is a consequence of brain scaling in primate evolution. Journal of Comparative Neurology, 2016, 524, 448-455.	1.6	47
36	Intracortical connections are altered after longâ€standing deprivation of dorsal column inputs in the hand region of area 3b in squirrel monkeys. Journal of Comparative Neurology, 2016, 524, 1494-1526.	1.6	28

#	Article	IF	CITATIONS
37	Spatiotemporal trajectories of reactivation of somatosensory cortex by direct and secondary pathways after dorsal column lesions in squirrel monkeys. NeuroImage, 2016, 142, 431-453.	4.2	19
38	No relative expansion of the number of prefrontal neurons in primate and human evolution. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9617-9622.	7.1	75
39	Chronic recordings reveal tactile stimuli can suppress spontaneous activity of neurons in somatosensory cortex of awake and anesthetized primates. Journal of Neurophysiology, 2016, 115, 2105-2123.	1.8	12
40	Plasticity and Recovery after Dorsal Column Spinal Cord Injury in Nonhuman Primates. Journal of Experimental Neuroscience, 2016, 10s1, JEN.S40197.	2.3	11
41	Somatosensory brainstem, thalamus, and cortex of the California sea lion (<i>Zalophus) Tj ETQq1 1 0.784314 r</i>	gBT_/Over	lock_10 Tf 50
42	Congenital foot deformation alters the topographic organization in the primate somatosensory system. Brain Structure and Function, 2016, 221, 383-406.	2.3	10
43	Cortical Connections of the Caudal Portion of Posterior Parietal Cortex in Prosimian Galagos. Cerebral Cortex, 2016, 26, 2753-2777.	2.9	26
44	Cortical cell and neuron density estimates in one chimpanzee hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 740-745.	7.1	67
45	The origins of thalamic inputs to grasp zones in frontal cortex of macaque monkeys. Brain Structure and Function, 2016, 221, 3123-3140.	2.3	1
46	Resolving the organization of the territory of the third visual area: A new proposal. Visual Neuroscience, 2015, 32, E016.	1.0	18
47	Spinal cord neuron inputs to the cuneate nucleus that partially survive dorsal column lesions: A pathway that could contribute to recovery after spinal cord injury. Journal of Comparative Neurology, 2015, 523, 2138-2160.	1.6	26
48	Topographic Maps. , 2015, , 426-428.		0
49	Neural Plasticity. , 2015, , 619-622.		0
50	Reversible Deactivation of Motor Cortex Reveals Functional Connectivity with Posterior Parietal Cortex in the Prosimian Galago (<i>Otolemur garnettii</i>). Journal of Neuroscience, 2015, 35, 14406-14422.	3.6	23
51	Mammalian Brains Are Made of These: A Dataset of the Numbers and Densities of Neuronal and Nonneuronal Cells in the Brain of Glires, Primates, Scandentia, Eulipotyphlans, Afrotherians and Artiodactyls, and Their Relationship with Body Mass. Brain, Behavior and Evolution, 2015, 86, 145-163.	1.7	176
52	Principles of Organization of the Dorsal Lateral Geniculate Nucleus. Brain, Behavior and Evolution, 2015, 85, 137-138.	1.7	0
53	Blindsight: Post-natal Potential of a Transient Pulvinar Pathway. Current Biology, 2015, 25, R155-R157.	3.9	28
54	How to count cells: the advantages and disadvantages of the isotropic fractionator compared with stereology. Cell and Tissue Research, 2015, 360, 29-42.	2.9	79

#	Article	IF	CITATIONS
55	The Types of Functional and Structural Subdivisions of Cortical Areas. , 2015, , 35-62.		Ο
56	Subcortical barrelette-like and barreloid-like structures in the prosimian galago (<i>Otolemur) Tj ETQq0 0 0 rgE 112, 7079-7084.</i>	3T /Overloc 7.1	ck 10 Tf 50 70 37
57	Somatosensory System. , 2015, , 675-701.		12
58	Greater addition of neurons to the olfactory bulb than to the cerebral cortex of eulipotyphlans but not rodents, afrotherians or primates. Frontiers in Neuroanatomy, 2014, 8, 23.	1.7	22
59	Three counting methods agree on cell and neuron number in chimpanzee primary visual cortex. Frontiers in Neuroanatomy, 2014, 8, 36.	1.7	62
60	Towards a unified scheme of cortical lamination for primary visual cortex across primates: insights from NeuN and VGLUT2 immunoreactivity. Frontiers in Neuroanatomy, 2014, 8, 81.	1.7	59
61	The reactivation of somatosensory cortex and behavioral recovery after sensory loss in mature primates. Frontiers in Systems Neuroscience, 2014, 8, 84.	2.5	32
62	Histological features of layers and sublayers in cortical visual areas V1 and V2 of chimpanzees, macaque monkeys, and humans. Eye and Brain, 2014, 2014, 5.	2.5	36
63	Patchy distributions of myelin and vesicular glutamate transporter 2 align with cytochrome oxidase blobs and interblobs in the superficial layers of the primary visual cortex. Eye and Brain, 2014, 6, 19.	2.5	8
64	Distribution of cortical neurons projecting to the superior colliculus in macaque monkeys. Eye and Brain, 2014, 2014, 121.	2.5	34
65	Current research on the organization and function of the visual system in primates. Eye and Brain, 2014, 6, 1.	2.5	10
66	Identification of ocular dominance domains in New World owl monkeys by immediate-early gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4297-4302.	7.1	22
67	Cortical inputs to the middle temporal visual area in New World owl monkeys. Eye and Brain, 2014, 2015, 1.	2.5	4
68	Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Frontiers in Neuroanatomy, 2014, 8, 77.	1.7	151
69	Parallel Functional Reorganizations of Somatosensory Areas 3b and 1, and S2 following Spinal Cord Injury in Squirrel Monkeys. Journal of Neuroscience, 2014, 34, 9351-9363.	3.6	20
70	Cortical Neuron Response Properties Are Related to Lesion Extent and Behavioral Recovery after Sensory Loss from Spinal Cord Injury in Monkeys. Journal of Neuroscience, 2014, 34, 4345-4363.	3.6	21
71	Evolution and Development of the Mammalian Cerebral Cortex. Brain, Behavior and Evolution, 2014, 83, 126-139.	1.7	64
72	Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaques. Journal of Comparative Neurology, 2014, 522, 546-572.	1.6	28

#	Article	IF	CITATIONS
73	Effects of muscimol inactivations of functional domains in motor, premotor, and posterior parietal cortex on complex movements evoked by electrical stimulation. Journal of Neurophysiology, 2014, 111, 1100-1119.	1.8	55
74	Cortical Networks for Ethologically Relevant Behaviors in Primates. American Journal of Primatology, 2013, 75, 407-414.	1.7	59
75	Faster Scaling of Auditory Neurons in Cortical Areas Relative to Subcortical Structures in Primate Brains. Brain, Behavior and Evolution, 2013, 81, 209-218.	1.7	15
76	Projections of the superior colliculus to the pulvinar in prosimian galagos (<i>Otolemur) Tj ETQq0 0 0 rgBT /Over 1664-1682.</i>	lock 10 Tf 1.6	50 627 Td (§
77	Epileptic baboons have lower numbers of neurons in specific areas of cortex. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19107-19112.	7.1	24
78	Functional signature of recovering cortex: Dissociation of local field potentials and spiking activity in somatosensory cortices of spinal cord injured monkeys. Experimental Neurology, 2013, 249, 132-143.	4.1	14
79	Cortical connections to single digit representations in area 3b of somatosensory cortex in squirrel monkeys and prosimian galagos. Journal of Comparative Neurology, 2013, 521, 3768-3790.	1.6	43
80	Cortical projections to the superior colliculus in tree shrews (<i>Tupaia belangeri</i>). Journal of Comparative Neurology, 2013, 521, 1614-1632.	1.6	13
81	The evolution of brains from early mammals to humans. Wiley Interdisciplinary Reviews: Cognitive Science, 2013, 4, 33-45.	2.8	203
82	Impairment and recovery of hand use after unilateral section of the dorsal columns of the spinal cord in squirrel monkeys. Behavioural Brain Research, 2013, 252, 363-376.	2.2	44
83	Thalamic Input to Representations of the Teeth, Tongue, and Face in Somatosensory Area 3b of Macaque Monkeys. Journal of Comparative Neurology, 2013, 521, 3954-3971.	1.6	21
84	Differential expression of vesicular glutamate transporters 1 and 2 may identify distinct modes of glutamatergic transmission in the macaque visual system. Journal of Chemical Neuroanatomy, 2013, 50-51, 21-38.	2.1	46
85	Development of myelination and cholinergic innervation in the central auditory system of a prosimian primate (<i>Otolemur garnetti</i>). Journal of Comparative Neurology, 2013, 521, 3804-3816.	1.6	13
86	Patterns of cortical reorganization in the adult marmoset after a cervical spinal cord injury. Journal of Comparative Neurology, 2013, 521, 3451-3463.	1.6	16
87	Cell and neuron densities in the primary motor cortex of primates. Frontiers in Neural Circuits, 2013, 7, 30.	2.8	58
88	Human Brain Evolution. , 2013, , 901-918.		21
89	Dynamic Reorganization of Digit Representations in Somatosensory Cortex of Nonhuman Primates after Spinal Cord Injury. Journal of Neuroscience, 2012, 32, 14649-14663.	3.6	44
90	Chondroitinase ABC promotes selective reactivation of somatosensory cortex in squirrel monkeys after a cervical dorsal column lesion. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2595-2600.	7.1	104

#	Article	IF	CITATIONS
91	Differential Expression Patterns of Striate Cortex-Enriched Genes among Old World, New World, and Prosimian Primates. Cerebral Cortex, 2012, 22, 2313-2321.	2.9	14

 $_{92}$ Intrinsic signal optical imaging evidence for dorsal V3 in the prosimian galago (<i>Otolemur) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 702 To 1.6

93	Somatosensory System. , 2012, , 1074-1109.		32
94	Evolution of columns, modules, and domains in the neocortex of primates. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10655-10660.	7.1	118
95	The evolution of neocortex in primates. Progress in Brain Research, 2012, 195, 91-102.	1.4	86
96	Motor Cortex. , 2012, , 528-538.		7
97	Use of flow cytometry for high-throughput cell population estimates in brain tissue. Frontiers in Neuroanatomy, 2012, 6, 27.	1.7	34
98	Effects of spatiotemporal stimulus properties on spike timing correlations in owl monkey primary somatosensory cortex. Journal of Neurophysiology, 2012, 108, 3353-3369.	1.8	10
99	The Geometric Structure of the Brain Fiber Pathways. Science, 2012, 335, 1628-1634.	12.6	385
100	Cortical projections to the superior colliculus in prosimian galagos (<i>Otolemur garnetti</i>). Journal of Comparative Neurology, 2012, 520, 2002-2020.	1.6	21
101	Cortical and subcortical connections of V1 and V2 in early postnatal macaque monkeys. Journal of Comparative Neurology, 2012, 520, 544-569.	1.6	42
102	Cortical networks subserving upper limb movements in primates. European Journal of Physical and Rehabilitation Medicine, 2012, 48, 299-306.	2.2	24
103	Reconstructing the Areal Organization of the Neocortex of the First Mammals. Brain, Behavior and Evolution, 2011, 78, 7-21.	1.7	53
104	Optical imaging in galagos reveals parietal–frontal circuits underlying motor behavior. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E725-32.	7.1	52
105	VGLUT2 mRNA and protein expression in the visual thalamus and midbrain of prosimian galagos (Otolemur garnetti). Eye and Brain, 2011, 2011, 5.	2.5	24
106	VGLUT1 mRNA and protein expression in the visual system of prosimian galagos (Otolemur garnetti). Eye and Brain, 2011, 2011, 81.	2.5	12
107	Neocortex in early mammals and its subsequent variations. Annals of the New York Academy of Sciences, 2011, 1225, 28-36.	3.8	43
108	Cellâ€poor septa separate representations of digits in the ventroposterior nucleus of the thalamus in monkeys and prosimian galagos. Journal of Comparative Neurology, 2011, 519, 738-758.	1.6	24

#	Article	IF	CITATIONS
109	Superior colliculus connections with visual thalamus in gray squirrels (Sciurus carolinensis): Evidence for four subdivisions within the pulvinar complex. Journal of Comparative Neurology, 2011, 519, 1071-1094.	1.6	60
110	Multiple Parietal–Frontal Pathways Mediate Grasping in Macaque Monkeys. Journal of Neuroscience, 2011, 31, 11660-11677.	3.6	120
111	Cortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys. Cerebral Cortex, 2011, 21, 1981-2002.	2.9	119
112	Updated Neuronal Scaling Rules for the Brains of Glires (Rodents/Lagomorphs). Brain, Behavior and Evolution, 2011, 78, 302-314.	1.7	107
113	Gorilla and Orangutan Brains Conform to the Primate Cellular Scaling Rules: Implications for Human Evolution. Brain, Behavior and Evolution, 2011, 77, 33-44.	1.7	73
114	Brain Banks Provide a Valuable Resource for Comparative Studies. Brain, Behavior and Evolution, 2011, 77, 65-66.	1.7	4
115	Preface. Brain, Behavior and Evolution, 2011, 78, 5-6.	1.7	0
116	Comparison of Area 17 Cellular Composition in Laboratory and Wild-Caught Rats Including Diurnal and Nocturnal Species. Brain, Behavior and Evolution, 2011, 77, 116-130.	1.7	32
117	Reorganization of Somatosensory Cortical Areas 3b and 1 after Unilateral Section of Dorsal Columns of the Spinal Cord in Squirrel Monkeys. Journal of Neuroscience, 2011, 31, 13662-13675.	3.6	52
118	The Organization and Evolution of Dorsal Stream Multisensory Motor Pathways in Primates. Frontiers in Neuroanatomy, 2011, 5, 34.	1.7	75
119	Spatiotemporal Properties of Neuron Response Suppression in Owl Monkey Primary Somatosensory Cortex When Stimuli Are Presented to Both Hands. Journal of Neuroscience, 2011, 31, 3589-3601.	3.6	60
120	The Evolution of Auditory Cortex: The Core Areas. , 2011, , 407-427.		29
121	Overview of Sensory Systems of Tarsius. International Journal of Primatology, 2010, 31, 1002-1031.	1.9	20
122	Architectonic Subdivisions of Neocortex in the Galago (<i>Otolemur garnetti</i>). Anatomical Record, 2010, 293, 1033-1069.	1.4	61
123	Somatosensation in social perception. Nature Reviews Neuroscience, 2010, 11, 417-428.	10.2	695
124	The lives of the brain. Journal of Clinical Investigation, 2010, 120, 938-938.	8.2	0
125	A rapid and reliable method of counting neurons and other cells in brain tissue: a comparison of flow cytometry and manual counting methods. Frontiers in Neuroanatomy, 2010, 4, 5.	1.7	45
126	Orientation and direction-of-motion response in the middle temporal visual area (MT) of New World owl monkeys as revealed by intrinsic-signal optical imaging. Frontiers in Neuroanatomy, 2010, 4, 23.	1.7	14

#	Article	IF	CITATIONS
127	Response Properties of Neurons in Primary Somatosensory Cortex of Owl Monkeys Reflect Widespread Spatiotemporal Integration. Journal of Neurophysiology, 2010, 103, 2139-2157.	1.8	47
128	Cellular Scaling Rules for Primate Spinal Cords. Brain, Behavior and Evolution, 2010, 76, 45-59.	1.7	35
129	Cellular Scaling Rules for the Brains of an Extended Number of Primate Species. Brain, Behavior and Evolution, 2010, 76, 32-44.	1.7	90
130	Neuron densities vary across and within cortical areas in primates. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15927-15932.	7.1	333
131	Connectivity-driven white matter scaling and folding in primate cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19008-19013.	7.1	135
132	Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 3192-3197.	7.1	16
133	Modular Processing in the Hand Representation of Primate Primary Somatosensory Cortex Coexists With Widespread Activation. Journal of Neurophysiology, 2010, 104, 3136-3145.	1.8	19
134	Thalamocortical Connections of Functional Zones in Posterior Parietal Cortex and Frontal Cortex Motor Regions in New World Monkeys. Cerebral Cortex, 2010, 20, 2391-2410.	2.9	80
135	Cortical Circuits. , 2010, , 25-34.		3
136	Cellular scaling rules of insectivore brains. Frontiers in Neuroanatomy, 2009, 3, 8.	1.7	82
137	Expression of immediate-early genes reveals functional compartments within ocular dominance columns after brief monocular inactivation. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12151-12155.	7.1	32
138	Thalamocortical Connections of Parietal Somatosensory Cortical Fields in Macaque Monkeys are Highly Divergent and Convergent. Cerebral Cortex, 2009, 19, 2038-2064.	2.9	82
139	Cortical connections of the visual pulvinar complex in prosimian galagos (<i>Otolemur garnetti</i>). Journal of Comparative Neurology, 2009, 517, 493-511.	1.6	27
140	Organization of the posterior parietal cortex in galagos: I. Functional zones identified by microstimulation. Journal of Comparative Neurology, 2009, 517, 765-782.	1.6	74
141	Organization of the posterior parietal cortex in galagos: II. Ipsilateral cortical connections of physiologically identified zones within anterior sensorimotor region. Journal of Comparative Neurology, 2009, 517, 783-807.	1.6	51
142	Architectonic Subdivisions of Neocortex in the Tree Shrew (<i>Tupaia belangeri</i>). Anatomical Record, 2009, 292, 994-1027.	1.4	66
143	The Organization of Orientation-Selective, Luminance-Change and Binocular- Preference Domains in the Second (V2) and Third (V3) Visual Areas of New World Owl Monkeys as Revealed by Intrinsic Signal Optical Imaging. Cerebral Cortex, 2009, 19, 1394-1407.	2.9	36

An Architectonic Study of the Neocortex of the Short-Tailed Opossum <i>(Monodelphis) Tj ETQq0 0 0 rgBT /Oyerlock 10 If 50 62 T

#	Article	IF	CITATIONS
145	Microstimulation and architectonics of frontoparietal cortex in common marmosets (<i>Callithrix) Tj ETQq1 1 0.</i>	784314 rg 1.6	gBT_/Overlock
146	Corpus callosum connections of subdivisions of motor and premotor cortex, and frontal eye field in a prosimian primate, <i>Otolemur garnetti</i> . Journal of Comparative Neurology, 2008, 508, 565-578.	1.6	26
147	Thalamic connections of architectonic subdivisions of temporal cortex in grey squirrels (<i>Sciurus) Tj ETQq1 1 (</i>).784314 1.6	rgBT/Overloc
148	Architectonic Subdivisions of Neocortex in the Gray Squirrel (<i>Sciurus carolinensis</i>). Anatomical Record, 2008, 291, 1301-1333.	1.4	61
149	The evolution of the complex sensory and motor systems of the human brain. Brain Research Bulletin, 2008, 75, 384-390.	3.0	142
150	Cortical and subcortical plasticity in the brains of humans, primates, and rats after damage to sensory afferents in the dorsal columns of the spinal cord. Experimental Neurology, 2008, 209, 407-416.	4.1	169
151	Widespread spatial integration in primary somatosensory cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10233-10237.	7.1	65
152	Large-Scale Reorganization in the Somatosensory Cortex and Thalamus after Sensory Loss in Macaque Monkeys. Journal of Neuroscience, 2008, 28, 11042-11060.	3.6	145
153	The basic nonuniformity of the cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 12593-12598.	7.1	137
154	Organizing Principles of Sensory Representations. Novartis Foundation Symposium, 2008, 228, 188-205.	1.1	16
155	Cellular scaling rules for primate brains. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3562-3567.	7.1	323
156	Introduction: The Use of Animal Research in Developing Treatments for Human Motor Disorders: Brain-Computer Interfaces and the Regeneration of Damaged Brain Circuits. ILAR Journal, 2007, 48, 313-316.	1.8	1
157	Cortical connections of the middle temporal and the middle temporal crescent visual areas in prosimian galagos (Otolemur garnetti). Anatomical Record, 2007, 290, 349-366.	1.4	20
158	The organization of frontoparietal cortex in the tree shrew (Tupaia belangeri): II. Connectional evidence for a frontal-posterior parietal network. Journal of Comparative Neurology, 2007, 501, 121-149.	1.6	53
159	Cortical and thalamic connections of the representations of the teeth and tongue in somatosensory cortex of new world monkeys. Journal of Comparative Neurology, 2007, 501, 95-120.	1.6	63
160	Can experiments in nonhuman primates expedite the translation of treatments for spinal cord injury in humans?. Nature Medicine, 2007, 13, 561-566.	30.7	403
161	Pulvinar contributions to the dorsal and ventral streams of visual processing in primates. Brain Research Reviews, 2007, 55, 285-296.	9.0	265
162	Intrinsic-signal optical imaging reveals cryptic ocular dominance columns in primary visual cortex of New World owl monkeys. Frontiers in Neuroscience, 2007, 1, 67-75.	2.8	17

#	Article	IF	CITATIONS
163	Organization of frontoparietal cortex in the tree shrew (Tupaia belangeri). I. Architecture, microelectrode maps, and corticospinal connections. Journal of Comparative Neurology, 2006, 497, 133-154.	1.6	42
164	The Evolution of Visual Cortex in Primates. , 2006, , 267-283.		5
165	Evolution of the neocortex. Current Biology, 2006, 16, R910-R914.	3.9	65
166	Cortical network for representing the teeth and tongue in primates. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 182-190.	2.0	47
167	Specializations of the granular prefrontal cortex of primates: Implications for cognitive processing. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2006, 288A, 26-35.	2.0	134
168	Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys. Journal of Comparative Neurology, 2006, 495, 691-708.	1.6	60
169	Organization of primary afferent projections to the gracile nucleus of the dorsal column system of primates. Journal of Comparative Neurology, 2006, 499, 183-217.	1.6	28
170	Unequal representation of cardinal vs. oblique orientations in the middle temporal visual area. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17490-17495.	7.1	51
171	The evolution of the neocortex in mammals: how is phenotypic diversity generated?. Current Opinion in Neurobiology, 2005, 15, 444-453.	4.2	178
172	Ipsilateral cortical connections of motor, premotor, frontal eye, and posterior parietal fields in a prosimian primate,Otolemur garnetti. Journal of Comparative Neurology, 2005, 490, 305-333.	1.6	103
173	Pyramidal neurons of granular prefrontal cortex of the galago: Complexity in evolution of the psychic cell in primates. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 285A, 610-618.	2.0	19
174	Distribution across cortical areas of neurons projecting to the superior colliculus in new world monkeys. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 285A, 619-627.	2.0	67
175	Overview of the visual system oftarsius. The Anatomical Record Part A: Discoveries in Molecular, Cellular, and Evolutionary Biology, 2005, 287A, 1013-1025.	2.0	60
176	Areal specialization of pyramidal cell structure in the visual cortex of the tree shrew: a new twist revealed in the evolution of cortical circuitry. Experimental Brain Research, 2005, 163, 13-20.	1.5	20
177	From mice to men: the evolution of the large, complex human brain. Journal of Biosciences, 2005, 30, 155-165.	1.1	39
178	Somatosensory areas S2 and PV project to the superior colliculus of a prosimian primate,Galago garnetti. Somatosensory & Motor Research, 2005, 22, 221-231.	0.9	7
179	Optical imaging of visually evoked responses in the middle temporal area after deactivation of primary visual cortex in adult primates. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 5594-5599.	7.1	38
180	The future of mapping sensory cortex in primates: three of many remaining issues. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 653-664.	4.0	34

#	Article	IF	CITATIONS
181	Microstimulation reveals specialized subregions for different complex movements in posterior parietal cortex of prosimian galagos. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4878-4883.	7.1	177
182	Serendipity and the Siamese Cat: The Discovery That Genes for Coat and Eye Pigment Affect the Brain. ILAR Journal, 2005, 46, 357-363.	1.8	16
183	Reappraisal of DL/V4 Boundaries Based on Connectivity Patterns of Dorsolateral Visual Cortex in Macaques. Cerebral Cortex, 2005, 15, 809-822.	2.9	59
184	Regional Specialization in Pyramidal Cell Structure in the Visual Cortex of the Galago: An Intracellular Injection Study of Striate and Extrastriate Areas with Comparative Notes on New World and Old World Monkeys. Brain, Behavior and Evolution, 2005, 66, 10-21.	1.7	27
185	Somatosensory System. , 2004, , 1059-1092.		40
186	Optical imaging of visually evoked responses in prosimian primates reveals conserved features of the middle temporal visual area. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 2566-2571.	7.1	30
187	Connections of neurons in the lumbar ventral horn of spinal cord are altered after long-standing limb loss in a macaque monkey. Somatosensory & Motor Research, 2004, 21, 229-239.	0.9	14
188	Evolution of somatosensory and motor cortex in primates. The Anatomical Record, 2004, 281A, 1148-1156.	1.8	199
189	Bilateral effects of spinal overhemisections on the development of the somatosensory system in rats. Journal of Comparative Neurology, 2004, 475, 604-619.	1.6	5
190	Anatomical and functional organization of somatosensory areas of the lateral fissure of the New World titi monkey (Callicebus moloch). Journal of Comparative Neurology, 2004, 476, 363-387.	1.6	89
191	Myelin stains reveal an anatomical framework for the representation of the digits in somatosensory area 3b of macaque monkeys. Journal of Comparative Neurology, 2004, 477, 172-187.	1.6	56
192	Neuroanatomy is Needed to Define the "Organs―of the Brain. Cortex, 2004, 40, 207-208.	2.4	8
193	Plasticity of Somatosensory and Motor Systems in Developing and Mature Primate Brains. , 2004, , 75-91.		1
194	The reorganization of the motor system in primates after the loss of a limb. Restorative Neurology and Neuroscience, 2004, 22, 145-52.	0.7	11
195	Somatosensory input to the ventrolateral thalamic region in the macaque monkey: A potential substrate for parkinsonian tremor. Journal of Comparative Neurology, 2003, 455, 378-395.	1.6	68
196	Somatosensory cortex of prosimian Galagos: Physiological recording, cytoarchitecture, and corticocortical connections of anterior parietal cortex and cortex of the lateral sulcus. Journal of Comparative Neurology, 2003, 457, 263-292.	1.6	77
197	The visual pulvinar in tree shrews I. Multiple subdivisions revealed through acetylcholinesterase and Cat-301 chemoarchitecture. Journal of Comparative Neurology, 2003, 467, 593-606.	1.6	32
198	The visual pulvinar in tree shrews II. Projections of four nuclei to areas of visual cortex. Journal of Comparative Neurology, 2003, 467, 607-627.	1.6	47

#	Article	IF	CITATIONS
199	The chemo- and somatotopic architecture of the Galago cuneate and gracile nuclei. Neuroscience, 2003, 116, 831-850.	2.3	22
200	Ascending inputs to the pre-supplementary motor area in the macaque monkey: cerebello- and pallido-thalamocortical projections. Thalamus & Related Systems, 2003, 2, 175.	0.5	3
201	Responses of Neurons in the Middle Temporal Visual Area After Long-Standing Lesions of the Primary Visual Cortex in Adult New World Monkeys. Journal of Neuroscience, 2003, 23, 2251-2264.	3.6	62
202	Patterned Activity via Spinal Dorsal Quadrant Inputs Is Necessary for the Formation of Organized Somatosensory Maps. Journal of Neuroscience, 2003, 23, 10321-10330.	3.6	43
203	The organization of somatosensory cortex in anthropoid primates. Advances in Neurology, 2003, 93, 57-67.	0.8	19
204	Anatomic and functional reorganization of somatosensory cortex in mature primates after peripheral nerve and spinal cord injury. Advances in Neurology, 2003, 93, 87-95.	0.8	33
205	Sensory loss and cortical reorganization in mature primates. Progress in Brain Research, 2002, 138, 167-176.	1.4	57
206	Topographic map reorganization in cat area 17 after early monocular retinal lesions. Visual Neuroscience, 2002, 19, 85-96.	1.0	12
207	Convergences in the Modular and Areal Organization of the Forebrain of Mammals: Implications for the Reconstruction of Forebrain Evolution. Brain, Behavior and Evolution, 2002, 59, 262-272.	1.7	69
208	Connectional Evidence for Dorsal and Ventral V3, and Other Extrastriate Areas in the Prosimian Primate, <i>Galago garnetti</i> . Brain, Behavior and Evolution, 2002, 59, 114-129.	1.7	55
209	Optical imaging reveals retinotopic organization of dorsal V3 in New World owl monkeys. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 15735-15742.	7.1	38
210	The effects of long-standing limb loss on anatomical reorganization of the somatosensory afferents in the brainstem and spinal cord. Somatosensory & Motor Research, 2002, 19, 153-163.	0.9	40
211	The genitals and gluteal skin are represented lateral to the foot in anterior parietal somatosensory cortex of macaques. Somatosensory & Motor Research, 2002, 19, 302-315.	0.9	24
212	Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys. Neuron, 2002, 33, 453-461.	8.1	102
213	Motor Cortex. , 2002, , 159-169.		8
214	How do features of sensory representations develop?. BioEssays, 2002, 24, 334-343.	2.5	48
215	Cortical and thalamic connections of the parietal ventral somatosensory area in marmoset monkeys (Callithrix jacchus). Journal of Comparative Neurology, 2002, 443, 168-182.	1.6	95
216	Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of new world monkeys. Journal of Comparative Neurology, 2002, 449, 281-297.	1.6	68

#	Article	IF	CITATIONS
217	Pulvinar and other subcortical connections of dorsolateral visual cortex in monkeys. Journal of Comparative Neurology, 2002, 450, 215-240.	1.6	36
218	Few intrinsic connections cross the hand-face border of area 3b of New World monkeys. Journal of Comparative Neurology, 2002, 454, 310-319.	1.6	58
219	Perspectives on brain evolution in primates. Trends in Neurosciences, 2001, 24, 620.	8.6	1
220	Variability in the sizes of brain parts. Behavioral and Brain Sciences, 2001, 24, 288-290.	0.7	55
221	Connectional and Architectonic Evidence for Dorsal and Ventral V3, and Dorsomedial Area in Marmoset Monkeys. Journal of Neuroscience, 2001, 21, 249-261.	3.6	105
222	Chapter 18 Visual cortex organization in primates: theories of V3 and adjoining visual areas. Progress in Brain Research, 2001, 134, 285-295.	1.4	67
223	Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. Journal of Comparative Neurology, 2001, 429, 455-468.	1.6	126
224	Topographic patterns of v2 cortical connections in a prosimian primate (Galago garnetti). Journal of Comparative Neurology, 2001, 431, 155-167.	1.6	41
225	Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans. Journal of Comparative Neurology, 2001, 441, 197-222.	1.6	450
226	Recovery of binocular responses by cortical neurons after early monocular lesions. Nature Neuroscience, 2001, 4, 689-690.	14.8	16
227	Evolving ideas of brain evolution. Nature, 2001, 411, 141-142.	27.8	23
228	The organization of sensory cortex. Current Opinion in Neurobiology, 2001, 11, 498-504.	4.2	84
229	Anatomic correlates of the face and oral cavity representations in the somatosensory cortical area 3b of monkeys. , 2001, 429, 455.		1
230	Projections of the superior colliculus to subdivisions of the inferior pulvinar in New World and Old World monkeys. Visual Neuroscience, 2000, 17, 529-549.	1.0	110
231	Pallidal and cerebellar afferents to pre-supplementary motor area thalamocortical neurons in the owl monkey: A multiple labeling study. , 2000, 417, 164-180.		86
232	How the visual projection map instructs the auditory computational map. , 2000, 421, 143-145.		9
233	Organization of sensory cortex in the East African hedgehog (Atelerix albiventris). Journal of Comparative Neurology, 2000, 421, 256-274.	1.6	37
234	Converging evidence from microstimulation, architecture, and connections for multiple motor areas in the frontal and cingulate cortex of prosimian primates. Journal of Comparative Neurology, 2000, 423, 140-177.	1.6	137

#	Article	IF	CITATIONS
235	Distribution of NADPH-diaphorase cells in visual and somatosensory cortex in four mammalian species. Brain Research, 2000, 864, 163-175.	2.2	25
236	Why is Brain Size so Important:Design Problems and Solutions as Neocortex Gets Biggeror Smaller. Brain and Mind, 2000, 1, 7-23.	0.6	212
237	Reorganization of Primary Motor Cortex in Adult Macaque Monkeys With Long-Standing Amputations. Journal of Neurophysiology, 2000, 84, 2133-2147.	1.8	97
238	The reorganization of somatosensory and motor cortex after peripheral nerve or spinal cord injury in primates. Progress in Brain Research, 2000, 128, 173-179.	1.4	81
239	Spinal Cord Atrophy and Reorganization of Motoneuron Connections Following Long-Standing Limb Loss in Primates. Neuron, 2000, 28, 967-978.	8.1	48
240	Reorganization in Primary Motor Cortex of Primates with Long-Standing Therapeutic Amputations. Journal of Neuroscience, 1999, 19, 7679-7697.	3.6	132
241	Interview with Jon Kaas. Journal of Cognitive Neuroscience, 1999, 11, 230-234.	2.3	1
242	Do superior colliculus projection zones in the inferior pulvinar project to MT in primates?. European Journal of Neuroscience, 1999, 11, 469-480.	2.6	123
243	The neocortex comes together. Nature, 1999, 399, 418-419.	27.8	9
244	'What' and 'where' processing in auditory cortex. Nature Neuroscience, 1999, 2, 1045-1047.	14.8	279
245	Prefrontal connections of the parabelt auditory cortex in macaque monkeys. Brain Research, 1999, 817, 45-58.	2.2	305
246	Auditory processing in primate cerebral cortex. Current Opinion in Neurobiology, 1999, 9, 164-170.	4.2	379
247	Cortical connections of the dorsomedial visual area in Old World macaque monkeys. , 1999, 406, 487-502.		50
248	Cortical organization in shrews: Evidence from five species. Journal of Comparative Neurology, 1999, 410, 55-72.	1.6	87
249	Subcortical Contributions to Massive Cortical Reorganizations. Neuron, 1999, 22, 657-660.	8.1	105
250	The transformation of association cortex into sensory cortex. Brain Research Bulletin, 1999, 50, 425.	3.0	6
251	Simultaneous encoding of tactile information by three primate cortical areas. Nature Neuroscience, 1998, 1, 621-630.	14.8	187
252	Phantoms of the brain. Nature, 1998, 391, 331-333.	27.8	29

#	ARTICLE	IF	CITATIONS
253	Intrathalamic connections: a new way to modulate cortical plasticity?. Nature Neuroscience, 1998, 1, 341-342.	14.8	15
254	Thalamic connections of the dorsomedial visual area in primates. Journal of Comparative Neurology, 1998, 396, 381-398.	1.6	38
255	Cortical connections of the dorsomedial visual area in prosimian primates. , 1998, 398, 162-178.		28
256	Cortical connections of the dorsomedial visual area in new world owl monkeys (Aotus trivirgatus) and squirrel monkeys (Saimiri sciureus). Journal of Comparative Neurology, 1998, 400, 18-34.	1.6	40
257	Cortical connections of striate and extrastriate visual areas in tree shrews. Journal of Comparative Neurology, 1998, 401, 109-128.	1.6	71
258	Subdivisions of AuditoryCortex and Levels of Processing in Primates. Audiology and Neuro-Otology, 1998, 3, 73-85.	1.3	204
259	Large-Scale Sprouting of Cortical Connections After Peripheral Injury in Adult Macaque Monkeys. , 1998, 282, 1117-1121.		384
260	Reorganization of Somatosensory Cortex After Nerve and Spinal Cord Injury. Physiology, 1998, 13, 143-149.	3.1	54
261	Architectonic subdivisions of the inferior pulvinar in New World and Old World monkeys. Visual Neuroscience, 1997, 14, 1043-1060.	1.0	85
262	REVIEW â— : Reorganization of Sensory Systems of Primates after Injury. Neuroscientist, 1997, 3, 123-130.	3.5	21
263	Topographic Maps are Fundamental to Sensory Processing. Brain Research Bulletin, 1997, 44, 107-112.	3.0	398
264	Visual Field Representation in Striate and Prestriate Cortices of a Prosimian Primate (Galago garnetti). Journal of Neurophysiology, 1997, 77, 3193-3217.	1.8	95
265	Deactivation and reactivation of somatosensory cortex after dorsal spinal cord injury. Nature, 1997, 386, 495-498.	27.8	194
266	Multiple divisions of macaque precentral motor cortex identified with neurofilament antibody SMI-32. Brain Research, 1997, 767, 148-153.	2.2	71
267	Plasticity of Somatosensory Cortex in Primates. Seminars in Neuroscience, 1997, 9, 3-12.	2.2	65
268	Organization of somatosensory cortex and distribution of corticospinal neurons in the eastern mole (Scalopus aquaticus). Journal of Comparative Neurology, 1997, 378, 337-353.	1.6	25
269	Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). Journal of Comparative Neurology, 1997, 379, 399-414.	1.6	90
270	Somatosensory fovea in the star-nosed mole: Behavioral use of the star in relation to innervation patterns and cortical representation. Journal of Comparative Neurology, 1997, 387, 215-233.	1.6	112

#	Article	IF	CITATIONS
271	Organization of sensory cortex in a Madagascan insectivore, the tenrec (Echinops telfairi). Journal of Comparative Neurology, 1997, 379, 399-414.	1.6	4
272	The Unusual Nose and Brain of the Star-Nosed Mole. BioScience, 1996, 46, 578-586.	4.9	69
273	Chapter 15 Theories of visual cortex organization in primates: areas of the third level. Progress in Brain Research, 1996, 112, 213-221.	1.4	26
274	Parvalbumin-like immunoreactivity of layer V pyramidal cells in the motor and somatosensory cortex of adult primates. Brain Research, 1996, 712, 353-357.	2.2	50
275	Topography, architecture, and connections of somatosensory cortex in opossums: Evidence for five somatosensory areas. Journal of Comparative Neurology, 1996, 366, 109-133.	1.6	158
276	Topographic patterns of V2 cortical connections in macaque monkeys. , 1996, 371, 129-152.		78
277	Movement representation in the dorsal and ventral premotor areas of owl monkeys: A microstimulation study. , 1996, 371, 649-676.		217
278	Central reorganization of sensory pathways following peripheral nerve regeneration in fetal monkeys. Nature, 1996, 381, 69-71.	27.8	99
279	Lateral division of the lateral posterior region: Connections with area 18 in cats. Visual Neuroscience, 1996, 13, 1167-1172.	1.0	3
280	Brain Reorganization and Experience. Peabody Journal of Education, 1996, 71, 152-167.	1.3	7
281	Cytochrome Oxidase 'Blobs' and Other Characteristics of Primary Visual Cortex in a Lemuroid Primate, <i>Cheirogaleus medius</i> . Brain, Behavior and Evolution, 1996, 47, 103-112.	1.7	44
282	Topography, architecture, and connections of somatosensory cortex in opossums: Evidence for five somatosensory areas. , 1996, 366, 109.		1
283	The Evolution of Isocortex. Brain, Behavior and Evolution, 1995, 46, 187-196.	1.7	123
284	Human Visual Cortex: Progress and puzzles. Current Biology, 1995, 5, 1126-1128.	3.9	27
285	Organization of the somatosensory cortex of the starâ€nosed mole. Journal of Comparative Neurology, 1995, 351, 549-567.	1.6	125
286	Vision without awareness. Nature, 1995, 373, 195-195.	27.8	4
287	How cortex reorganizes. Nature, 1995, 375, 735-736.	27.8	17
288	GAP-43 expression in the medulla of macaque monkeys: changes during postnatal development and the effects of early median nerve repair. Developmental Brain Research, 1995, 90, 24-34.	1.7	9

#	Article	IF	CITATIONS
289	The emergence and evolution of mammalian neocortex. Trends in Neurosciences, 1995, 18, 373-379.	8.6	347
290	The Organization of Callosal Connections in Primates. Advances in Behavioral Biology, 1995, , 15-27.	0.2	16
291	The postnatal development of geniculocortical axon arbors in owl monkeys. Visual Neuroscience, 1994, 11, 71-90.	1.0	17
292	Subdivisions of the visual system labeled with the Cat-301 antibody in tree shrews. Visual Neuroscience, 1994, 11, 731-741.	1.0	38
293	Architectonic subdivisions of the motor thalamus of owl monkeys: Nissl, acetylcholinesterase, and cytochrome oxidase patterns. Journal of Comparative Neurology, 1994, 349, 536-557.	1.6	45
294	Thalamic connections of the primary motor cortex (M1) of owl monkeys. Journal of Comparative Neurology, 1994, 349, 558-582.	1.6	81
295	Interhemispheric connections in neonatal owl monkeys (Aotus trivirgatus) and galagos (Galago) Tj ETQq1 1 0.784	4314 rgBT 2.2	- /gyerlock 1
296	The Afferent, Intrinsic, and Efferent Connections of Primary Visual Cortex in Primates. Cerebral Cortex, 1994, , 201-259.	0.6	140
297	Architectionis, somatotopic organization, and ipsilateral cortical connections of the primary motor area (M1) of owl monkeys. Journal of Comparative Neurology, 1993, 330, 238-271.	1.6	302
298	The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates. Journal of Comparative Neurology, 1993, 334, 497-528.	1.6	110
299	Nose stars and brain stripes. Nature, 1993, 364, 493-493.	27.8	32
300	Vision in blind mole rats. Nature, 1993, 361, 113-113.	27.8	6
301	The functional organization of somatosensory cortex in primates. Annals of Anatomy, 1993, 175, 509-518.	1.9	125
302	Topography of supplementary eye field afferents to frontal eye field in macaque: Implications for mapping between saccade coordinate systems. Visual Neuroscience, 1993, 10, 385-393.	1.0	89
303	Areal, Modular, and Connectional Organization of Visual Cortex in a Prosimian Primate, the Slow Loris <i>(Nycticebus coucang)</i> . Brain, Behavior and Evolution, 1993, 42, 321-335.	1.7	39
304	Archontan Affinities as Reflected in the Visual System. , 1993, , 115-126.		31
305	Area 17 lesions deactivate area MT in owl monkeys. Visual Neuroscience, 1992, 9, 399-407.	1.0	48
306	Dynamic features of sensory and motor maps. Current Opinion in Neurobiology, 1992, 2, 522-527.	4.2	63

#	Article	IF	CITATIONS
307	Subdivisions and connections of auditory cortex in owl monkeys. Journal of Comparative Neurology, 1992, 318, 27-63.	1.6	202
308	The somatosensory thalamus of monkeys: Cortical connections and a redefinition of nuclei in marmosets. Journal of Comparative Neurology, 1992, 319, 123-140.	1.6	116
309	Hierarchical, parallel, and serial arrangements of sensory cortical areas: connection patterns and functional aspects. Current Opinion in Neurobiology, 1991, 1, 248-251.	4.2	37
310	Functional reorganization in adult monkey thalamus after peripheral nerve injury. NeuroReport, 1991, 2, 747-750.	1.2	153
311	Injury-Induced Reorganization of Somatosensory Cortex Is Accompanied by Reductions in GABA Staining. Somatosensory & Motor Research, 1991, 8, 347-354.	0.9	148
312	Supplementary eye field as defined by intracortical microstimulation: Connections in macaques. Journal of Comparative Neurology, 1990, 293, 299-330.	1.6	367
313	Convergence of processing channels in the extrastriate cortex of monkeys. Visual Neuroscience, 1990, 5, 609-613.	1.0	53
314	Areal Distributions of Cortical Neurons Projecting to Different Levels of the Caudal Brain Stem and Spinal Cord in Rats. Somatosensory & Motor Research, 1990, 7, 315-335.	0.9	100
315	Parameters affecting the loss of ganglion cells of the retina following ablations of striate cortex in primates. Visual Neuroscience, 1989, 3, 327-349.	1.0	88
316	Why Does the Brain Have So Many Visual Areas?. Journal of Cognitive Neuroscience, 1989, 1, 121-135.	2.3	164
317	Determining species differences in numbers of cortical areas and modules: The architectonic method needs supplementation. Behavioral and Brain Sciences, 1988, 11, 96-97.	0.7	1
318	Variability in hand surface representations in areas 3b and 1 in adult owl and squirrel monkeys. Journal of Comparative Neurology, 1987, 258, 281-296.	1.6	267
319	Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections. Journal of Comparative Neurology, 1987, 265, 332-361.	1.6	373
320	Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys: I. Subcortical connections. Journal of Comparative Neurology, 1986, 253, 415-439.	1.6	380
321	Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. Journal of Comparative Neurology, 1984, 228, 81-104.	1.6	103
322	Duplication of brain parts in evolution. Behavioral and Brain Sciences, 1984, 7, 342-343.	0.7	7
323	Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos. Journal of Comparative Neurology, 1982, 211, 193-214.	1.6	77
324	Lesion-Induced Neuronal Plasticity in Sensorimotor Systems. Proceedings of a Symposium Held in Bremen in July 1980, as a Satellite Meeting of the XXVIII.H. Flohr , W. Precht. Quarterly Review of Biology, 1982, 57, 348-349.	0.1	0

#	Article	IF	CITATIONS
325	The distribution of commissural terminations in somatosensory areas I and II of the grey squirrel. Journal of Comparative Neurology, 1981, 196, 489-504.	1.6	63
326	The organization of somatosensory area II in tree shrews. Journal of Comparative Neurology, 1981, 201, 121-133.	1.6	38
327	Physiological and anatomical evidence for a discontinuous representation of the trunk in S-I of tree shrews. Journal of Comparative Neurology, 1981, 201, 135-147.	1.6	17
328	Representation of the body surface in somatosensory area I of tree shrews,Tupaia glis. Journal of Comparative Neurology, 1980, 194, 71-95.	1.6	44
329	Connections of areas 3b and 1 of the parietal somatosensory strip with the ventroposterior nucleus in the owl monkey(Aotus trivirgatus). Journal of Comparative Neurology, 1979, 185, 355-371.	1.6	70
330	Double representation of the body surface within cytoarchitectonic area 3b and 1 in "SI―in the owl monkey (aotus trivirgatus). Journal of Comparative Neurology, 1978, 181, 41-73.	1.6	459
331	Connections of striate cortex in the prosimian, <i>galago senegalensis</i> . Journal of Comparative Neurology, 1978, 181, 477-511.	1.6	114
332	Cortical projections of area 18 in owl monkeys. Vision Research, 1977, 17, 739-741.	1.4	52
333	Auditory cortex in the grey squirrel: Tonotopic organization and architectonic fields. Journal of Comparative Neurology, 1976, 166, 387-401.	1.6	124
334	Visual cortex of the tree shrew (Tupaia glis): Architectonic subdivisions and representations of the visual field. Brain Research, 1972, 42, 491-496.	2.2	89
335	Representation of the visual field in striate and adjoining cortex of the owl monkey(Aotus) Tj ETQq1 1 0.784314	rgBT_/Ove	erlock 10 Tf 5
336	A representation of the visual field in the caudal third of the middle temporal gyrus of the owl monkey (Aotus trivirgatus). Brain Research, 1971, 31, 85-105.	2.2	487
337	Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus) Tj ETQq1 1 0.784314 rgE	BT /Overloo 2.2	ck 19 Tf 50 2
338	Plasticity of mature and developing somatosensory systems. , 0, , 97-108.		0
339	Cortical connections of striate and extrastriate visual areas in tree shrews. , 0, .		1
340	The Lateral Geniculate Nucleus. , 0, , 161-189.		3