
Olivera S Stamenković

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7172258/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biodiesel production from non-edible plant oils. Renewable and Sustainable Energy Reviews, 2012, 16, 3621-3647.	16.4	396
2	Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel, 2006, 85, 2671-2675.	6.4	345
3	Waste animal fats as feedstocks for biodiesel production. Renewable and Sustainable Energy Reviews, 2014, 32, 238-254.	16.4	287
4	Calcium oxide as a promising heterogeneous catalyst for biodiesel production: Current state and perspectives. Renewable and Sustainable Energy Reviews, 2016, 56, 1387-1408.	16.4	262
5	Kinetics of sunflower oil methanolysis catalyzed by calcium oxide. Fuel, 2009, 88, 1554-1562.	6.4	218
6	The production of biodiesel from vegetable oils by ethanolysis: Current state and perspectives. Fuel, 2011, 90, 3141-3155.	6.4	196
7	Application of ionic liquids and deep eutectic solvents in biodiesel production: A review. Renewable and Sustainable Energy Reviews, 2016, 61, 473-500.	16.4	178
8	Application of nano CaO–based catalysts in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 2017, 72, 746-760.	16.4	176
9	Biodiesel production by ultrasound-assisted transesterification: State of the art and the perspectives. Renewable and Sustainable Energy Reviews, 2012, 16, 1193-1209.	16.4	165
10	Biodiesel production from corn oil: A review. Renewable and Sustainable Energy Reviews, 2018, 91, 531-548.	16.4	152
11	Kinetics of sunflower oil methanolysis at low temperatures. Bioresource Technology, 2008, 99, 1131-1140.	9.6	145
12	The effect of agitation intensity on alkali-catalyzed methanolysis of sunflower oil. Bioresource Technology, 2007, 98, 2688-2699.	9.6	133
13	Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 2014, 32, 1-15.	16.4	120
14	Optimization and kinetics of sunflower oil methanolysis catalyzed by calcium oxide-based catalyst derived from palm kernel shell biochar. Fuel, 2016, 163, 304-313.	6.4	117
15	Technological, technical, economic, environmental, social, human health risk, toxicological and policy considerations of biodiesel production and use. Renewable and Sustainable Energy Reviews, 2017, 79, 222-247.	16.4	112
16	Kinetics of the base-catalyzed sunflower oil ethanolysis. Fuel, 2010, 89, 665-671.	6.4	99
17	Optimization of hempseed oil extraction by n-hexane. Industrial Crops and Products, 2013, 48, 133-143.	5.2	95
18	The wastewater treatment in the biodiesel production with alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 2014, 32, 40-60.	16.4	95

Olivera S Stamenković

#	Article	IF	CITATIONS
19	A calcium oxide-based catalyst derived from palm kernel shell gasification residues for biodiesel production. Fuel, 2015, 150, 519-525.	6.4	94
20	Purification of crude biodiesel obtained by heterogeneously-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 2015, 49, 500-516.	16.4	93
21	Production of biofuels from sorghum. Renewable and Sustainable Energy Reviews, 2020, 124, 109769.	16.4	88
22	Valorization of walnut shell ash as a catalyst for biodiesel production. Renewable Energy, 2020, 147, 1033-1043.	8.9	82
23	Optimization of sunflower oil ethanolysis catalyzed by calcium oxide: RSM versus ANN-GA. Energy Conversion and Management, 2015, 105, 1149-1156.	9.2	79
24	Optimization and kinetic modeling of esterification of the oil obtained from waste plum stones as a pretreatment step in biodiesel production. Waste Management, 2016, 48, 619-629.	7.4	66
25	Kinetic modeling and optimization of maceration and ultrasound-extraction of resinoid from the aerial parts of white lady's bedstraw (Galium mollugo L.). Ultrasonics Sonochemistry, 2013, 20, 525-534.	8.2	63
26	The kinetics and thermodynamics of hempseed oil extraction by n-hexane. Industrial Crops and Products, 2014, 52, 679-686.	5.2	63
27	Synthesis and characterization of spherically-shaped CaO/γ-Al 2 O 3 catalyst and its application in biodiesel production. Energy Conversion and Management, 2017, 144, 399-413.	9.2	62
28	Optimization of ultrasound-assisted base-catalyzed methanolysis of sunflower oil using response surface and artifical neural network methodologies. Chemical Engineering Journal, 2013, 215-216, 82-89.	12.7	60
29	Optimization of base-catalyzed ethanolysis of sunflower oil by regression and artificial neural network models. Fuel Processing Technology, 2013, 114, 101-108.	7.2	46
30	The optimization of the ultrasound-assisted base-catalyzed sunflower oil methanolysis by a full factorial design. Fuel Processing Technology, 2010, 91, 1551-1557.	7.2	44
31	Application of the full factorial design to optimization of base-catalyzed sunflower oil ethanolysis. Fuel, 2013, 104, 433-442.	6.4	43
32	Cost analysis of simulated base-catalyzed biodiesel production processes. Energy Conversion and Management, 2014, 84, 405-413.	9.2	43
33	A kinetic study of quicklime-catalyzed sunflower oil methanolysis. Chemical Engineering Research and Design, 2014, 92, 1740-1752.	5.6	42
34	Optimization of CaO-catalyzed sunflower oil methanolysis with crude biodiesel as a cosolvent. Fuel, 2019, 237, 903-910.	6.4	42
35	Modeling the kinetics of calcium hydroxide catalyzed methanolysis of sunflower oil. Bioresource Technology, 2010, 101, 4423-4430.	9.6	38
36	White Mustard (Sinapis alba L.) Oil in Biodiesel Production: A Review. Frontiers in Plant Science, 2020, 11, 299.	3.6	36

#	Article	IF	CITATIONS
37	Modeling of biodiesel production: Performance comparison of Box–Behnken, face central composite and full factorial design. Chinese Journal of Chemical Engineering, 2019, 27, 1690-1698.	3.5	34
38	Modeling and optimization of sunflower oil methanolysis over quicklime bits in a packed bed tubular reactor using the response surface methodology. Energy Conversion and Management, 2016, 130, 25-33.	9.2	30
39	Empirical modeling the ultrasound-assisted base-catalyzed sunflower oil methanolysis kinetics. Chemical Industry and Chemical Engineering Quarterly, 2012, 18, 115-127.	0.7	27
40	Optimization and kinetic modeling of oil extraction from white mustard (Sinapis alba L.) seeds. Industrial Crops and Products, 2018, 121, 132-141.	5.2	27
41	Biodiesel production by methanolysis of waste lard from piglet roasting over quicklime. Fuel, 2016, 182, 454-466.	6.4	26
42	Kinetic modeling and optimization of biodiesel production from white mustard (Sinapis alba L.) seed oil by quicklime-catalyzed transesterification. Fuel, 2018, 223, 125-139.	6.4	26
43	Comparison of Box-Behnken, Face Central Composite and Full Factorial Designs in Optimization of Hempseed Oil Extraction by n-Hexane: a Case Study. Periodica Polytechnica: Chemical Engineering, 2018, 62, 359-367.	1.1	26
44	The effects of cosolvents on homogeneously and heterogeneously base-catalyzed methanolysis of sunflower oil. Fuel, 2013, 107, 493-502.	6.4	24
45	Continuous sunflower oil methanolysis over quicklime in a packed-bed tubular reactor. Fuel, 2015, 154, 301-307.	6.4	24
46	Kinetics of the sunflower oil ethanolysis using CaO as catalyst. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 409-418.	0.7	23
47	Kinetic modeling and optimization of sunflower oil methanolysis catalyzed by spherically-shaped CaO/Î ³ -Al2O3 catalyst. Energy Conversion and Management, 2018, 163, 122-133.	9.2	21
48	Optimization of KOH-catalyzed methanolysis of hempseed oil. Energy Conversion and Management, 2015, 103, 235-243.	9.2	19
49	Kinetic Modeling of Sunflower Oil Methanolysis Catalyzed by Calciumâ€Based Catalysts. Chemical Engineering and Technology, 2015, 38, 1550-1556.	1.5	18
50	Kinetic, thermodynamic and optimization study of the corn germ oil extraction process. Food and Bioproducts Processing, 2020, 120, 91-103.	3.6	18
51	The kinetic and thermodynamic analysis of ultrasound-extraction of minerals from aerial parts of white lady's bedstraw (Galium mollugo L.). Chemical Engineering Research and Design, 2014, 92, 1399-1409.	5.6	15
52	Camelina seed harvesting, storing, pretreating, and processing to recover oil: A review. Industrial Crops and Products, 2022, 178, 114539.	5.2	13
53	Extraction of Oil from Rosehip Seed: Kinetics, Thermodynamics, and Optimization. Chemical Engineering and Technology, 2020, 43, 2373-2381.	1.5	12
54	A further study of the kinetics and optimization of the essential oil hydrodistillation from lavender flowers. Chinese Journal of Chemical Engineering, 2021, 29, 126-130.	3.5	12

#	Article	IF	CITATIONS
55	A Kinetic Study of Sunflower Oil Methanolysis Catalyzed by Barium Hydroxide. Chemical Engineering and Technology, 2014, 37, 2143-2151.	1.5	9
56	Waste Lard Methanolysis Catalyzed by KOH at Moderate Temperatures. Chemical Engineering and Technology, 2016, 39, 741-750.	1.5	9
57	Further study on kinetic modeling of sunflower oil methanolysis catalyzed by calcium-based catalysts. Chemical Industry and Chemical Engineering Quarterly, 2016, 22, 137-144.	0.7	9
58	Biodiesel production by enzyme-catalyzed transesterification. Hemijska Industrija, 2005, 59, 49-59.	0.7	9
59	Heterogeneous base-catalyzed methanolysis of vegetable oils: State of art. Hemijska Industrija, 2010, 64, 63-80.	0.7	9
60	Biodiesel production from camelina oil: Present status and future perspectives. Food and Energy Security, 2023, 12, e340.	4.3	9
61	Optimization and kinetic modeling of waste lard methanolysis in a continuous reciprocating plate reactor. Chinese Journal of Chemical Engineering, 2019, 27, 2481-2490.	3.5	8
62	Transesterification of used cooking sunflower oil catalyzed by hazelnut shell ash. Renewable Energy, 2022, 183, 103-113.	8.9	8
63	Statistical modeling and optimization of ultrasound-assisted biodiesel production using various experimental designs. Materials Protection, 2019, 60, 70-80.	0.9	7
64	Modeling the biodiesel production using the wheat straw ash as a catalyst. Hemijska Industrija, 2021, 75, 257-276.	0.7	5
65	Continuous biodisel productions: A review. Hemijska Industrija, 2009, 63, 1-10.	0.7	4
66	Triethanolamine as an efficient cosolvent for biodiesel production by CaO-catalyzed sunflower oil ethanolysis: An optimization study. Hemijska Industrija, 2019, 73, 351-362.	0.7	4
67	Optimization of biodiesel production from corn oil by methanolysis catalyzed by corn cob ash. Reciklaža I Održivi Razvoj, 2018, 11, 53-62.	0.5	4
68	Circular economy in apple processing industry: Biodiesel production from waste apple seeds. Chemical Industry and Chemical Engineering Quarterly, 2022, 28, 237-245.	0.7	4
69	Influence of various cosolvents on the calcium oxide-catalyzed ethanolysis of sunflower oil. Journal of the Serbian Chemical Society, 2019, 84, 253-265.	0.8	4
70	Waste Vegetable Oils, Fats, and Cooking Oils in Biodiesel Production. Handbook of Environmental Engineering, 2021, , 147-263.	0.4	3
71	The gas holdup in a multiphase reciprocating plate column filled with carboxymethylcellulose solutions. Journal of the Serbian Chemical Society, 2005, 70, 1533-1544.	0.8	3
72	The biodiesel production from the cotton thistle seed oil (Onopordum acanthium L.). Savremene Tehnologije, 2014, 3, 35-45.	0.0	3

#	Article	IF	CITATIONS
73	Statistical modeling and optimization of classical and ultrasound-assisted extraction of the minerals fromGalium mollugoL. by response surface methodology and genetic algorithm. Journal of Food Processing and Preservation, 2018, 42, e13552.	2.0	2
74	The influence of fatty acid composition on the kinetics of the vegetable oil methanolysis reaction. Advanced Technologies, 2021, 10, 24-31.	0.4	2
75	Optimization of the used sunflower oil methanolysis catalyzed by hazelnut shell ash. Advanced Technologies, 2021, 10, 32-39.	0.4	1