Michele Francesco Maria Sciacca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7172154/publications.pdf Version: 2024-02-01

MICHELE FRANCESCO MARIA

#	Article	IF	CITATIONS
1	Two-Step Mechanism of Membrane Disruption by Al ² through Membrane Fragmentation and Pore Formation. Biophysical Journal, 2012, 103, 702-710.	0.5	326
2	Phosphatidylethanolamine Enhances Amyloid Fiber-Dependent Membrane Fragmentation. Biochemistry, 2012, 51, 7676-7684.	2.5	103
3	Cations as Switches of Amyloid-Mediated Membrane Disruption Mechanisms: Calcium and IAPP. Biophysical Journal, 2013, 104, 173-184.	0.5	103
4	Amyloid growth and membrane damage: Current themes and emerging perspectives from theory and experiments on Al² and hIAPP. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1625-1638.	2.6	103
5	Lipid-Chaperone Hypothesis: A Common Molecular Mechanism of Membrane Disruption by Intrinsically Disordered Proteins. ACS Chemical Neuroscience, 2020, 11, 4336-4350.	3.5	101
6	Probing the Sources of the Apparent Irreproducibility of Amyloid Formation: Drastic Changes in Kinetics and a Switch in Mechanism Due to Micellelike Oligomer Formation at Critical Concentrations of IAPP. Journal of Physical Chemistry B, 2015, 119, 2886-2896.	2.6	85
7	Does cholesterol suppress the antimicrobial peptide induced disruption of lipid raft containing membranes?. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 3019-3024.	2.6	80
8	The Role of Cholesterol in Driving IAPP-Membrane Interactions. Biophysical Journal, 2016, 111, 140-151.	0.5	74
9	Inhibition of Aβ Amyloid Growth and Toxicity by Silybins: The Crucial Role of Stereochemistry. ACS Chemical Neuroscience, 2017, 8, 1767-1778.	3.5	72
10	Phospholipids Critical Micellar Concentrations Trigger Different Mechanisms of Intrinsically Disordered Proteins Interaction with Model Membranes. Journal of Physical Chemistry Letters, 2018, 9, 5125-5129.	4.6	66
11	Lipid Composition-Dependent Membrane Fragmentation and Pore-Forming Mechanisms of Membrane Disruption by Pexiganan (MSI-78). Biochemistry, 2013, 52, 3254-3263.	2.5	63
12	The role of aromatic side-chains in amyloid growth and membrane interaction of the islet amyloid polypeptide fragment LANFLVH. European Biophysics Journal, 2011, 40, 1-12.	2.2	50
13	Extracellular truncated tau causes early presynaptic dysfunction associated with Alzheimer's disease and other tauopathies. Oncotarget, 2017, 8, 64745-64778.	1.8	49
14	Calcium-activated membrane interaction of the islet amyloid polypeptide: Implications in the pathogenesis of type II diabetes mellitus. Archives of Biochemistry and Biophysics, 2008, 477, 291-298.	3.0	40
15	Selfâ€Assembling Pathway of HiApp Fibrils within Lipid Bilayers. ChemBioChem, 2010, 11, 1856-1859.	2.6	38
16	Membrane Interactions and Conformational Preferences of Human and Avian Prion N-Terminal Tandem Repeats: The Role of Copper(II) lons, pH, and Membrane Mimicking Environments. Journal of Physical Chemistry B, 2010, 114, 13830-13838.	2.6	37
17	Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Physical Chemistry Chemical Physics, 2014, 16, 2368-2377.	2.8	36
18	A blend of two resveratrol derivatives abolishes hIAPP amyloid growth and membrane damage. Biochimica Et Biophysica Acta - Biomembranes, 2018, 1860, 1793-1802.	2.6	36

MICHELE FRANCESCO MARIA

#	Article	IF	CITATIONS
19	The active role of Ca ²⁺ ions in Aβ-mediated membrane damage. Chemical Communications, 2018, 54, 3629-3631.	4.1	25
20	Trehalose Conjugates of Silybin as Prodrugs for Targeting Toxic AÎ ² Aggregates. ACS Chemical Neuroscience, 2020, 11, 2566-2576.	3.5	20
21	Are fibrilgrowth and membrane damage linked processes? An experimental and computational study of IAPP12–18and IAPP21–27peptides. New Journal of Chemistry, 2010, 34, 200-207.	2.8	19
22	Folding mechanisms steer the amyloid fibril formation propensity of highly homologous proteins. Chemical Science, 2018, 9, 3290-3298.	7.4	18
23	Tau-peptide fragments and their copper(II) complexes: Effects on Amyloid-Î ² aggregation. Inorganica Chimica Acta, 2018, 472, 82-92.	2.4	17
24	The Role of Calcium, Lipid Membranes and Islet Amyloid Polypeptide in the Onset of Type 2 Diabetes: Innocent Bystanders or Partners in a Crime?. Frontiers in Endocrinology, 2014, 5, 216.	3.5	16
25	The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chemistry and Physics of Lipids, 2021, 236, 105072.	3.2	16
26	Amyloid-Mediated Mechanisms of Membrane Disruption. Biophysica, 2021, 1, 137-156.	1.4	14
27	Interactions of two O-phosphorylresveratrol derivatives with model membranes. Archives of Biochemistry and Biophysics, 2012, 521, 111-116.	3.0	13
28	Copper(ii) and zinc(ii) dependent effects on Aβ42 aggregation: a CD, Th-T and SFM study. New Journal of Chemistry, 2013, 37, 1206.	2.8	13
29	Role of electrostatics in the thermal stability of ubiquitin. Journal of Thermal Analysis and Calorimetry, 2006, 86, 311-314.	3.6	10
30	Thermodynamics of azurin folding. Journal of Thermal Analysis and Calorimetry, 2008, 93, 575-581.	3.6	8
31	Tau/AÎ ² chimera peptides: Evaluating the dual function of metal coordination and membrane interaction in one sequence. Journal of Inorganic Biochemistry, 2020, 205, 110996.	3.5	7
32	Tau/Aβ chimera peptides: A Thioflavin-T and MALDI-TOF study of Aβ amyloidosis in the presence of Cu(II) or Zn(II) ions and total lipid brain extract (TLBE) vesicles. Chemistry and Physics of Lipids, 2021, 237, 105085.	3.2	6
33	The Ionophoric Activity of a Pro-Apoptotic VEGF165 Fragment on HUVEC Cells. International Journal of Molecular Sciences, 2020, 21, 2866.	4.1	5
34	Interaction of Human Amylin with Phosphatidylcholine and Phosphatidylserine Membranes. Molecular Crystals and Liquid Crystals, 2009, 500, 73-81.	0.9	3
35	Phosphatidylethanolamine Enhances Amyloid Fiber Dependent Membrane Fragmentation. Biophysical Journal, 2012, 102, 488a.	0.5	3
36	Probing the helical stability in a VEGF-mimetic peptide. Bioorganic Chemistry, 2021, 116, 105379.	4.1	3

MICHELE FRANCESCO MARIA

#	Article	IF	CITATIONS
37	Semax, a Synthetic Regulatory Peptide, Affects Copper-Induced Abeta Aggregation and Amyloid Formation in Artificial Membrane Models. ACS Chemical Neuroscience, 2022, 13, 486-496.	3.5	3
38	Gangliosides Mediate a Two-Step Mechanism of Membrane Disruption byÂBeta-Amyloid: Initial Pore Formation Followed by Membrane Fragmentation. Biophysical Journal, 2013, 104, 217a.	0.5	2
39	Strategy to discover full-length amyloid-beta peptide ligands using high-efficiency microarray technology. Beilstein Journal of Nanotechnology, 2017, 8, 2446-2453.	2.8	2
40	Pores Versus Fibrils: Calcium Ions Regulate Different IAPP-Mediated Membrane Damage Mechanisms. Biophysical Journal, 2013, 104, 395a.	0.5	1
41	Tracking Conformational Changes during Amyloidogenesis in Real-Time at Atomic-Resolution by NMR. Biophysical Journal, 2012, 102, 242a.	0.5	0
42	The Role of "Raft-Like―Membranes on Antimicrobial Peptide-Lipid Bilayer Interactions. Biophysical Journal, 2012, 102, 495a.	0.5	0
43	Divergent Mechanisms in Amyloid Formation Controlled by Critical Points. Biophysical Journal, 2013, 104, 51a.	0.5	Ο