José I GarcÃ-a-Plazaola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717192/publications.pdf

Version: 2024-02-01

125 papers 4,790 citations

41 h-index 62 g-index

125 all docs

125 docs citations

125 times ranked 4987 citing authors

#	Article	IF	CITATIONS
1	Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. Tree Physiology, 2022, 42, 208-224.	3.1	15
2	More than just lipid balls: quantitative analysis of plastoglobule attributes and their stress-related responses. Planta, 2022, 255, 62.	3.2	12
3	Cell-level anatomy explains leaf age-dependent declines in mesophyll conductance and photosynthetic capacity in the evergreen Mediterranean oak <i>Quercus ilex</i> subsp. <i>rotundifolia</i> Tree Physiology, 2022, , .	3.1	2
4	Assessing Plant Pigment Regulation in Circadian Experiments. Methods in Molecular Biology, 2022, 2494, 135-148.	0.9	1
5	Combined dynamics of the 500–600Ânm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148351.	1.0	13
6	Alpine forbs rely on different photoprotective strategies during spring snowmelt. Physiologia Plantarum, 2021, 172, 1506-1517.	5.2	9
7	Shedding light on the dark side of xanthophyll cycles. New Phytologist, 2021, 230, 1336-1344.	7.3	37
8	Frozen in the dark: interplay of night-time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter. Journal of Experimental Botany, 2021, 72, 3168-3184.	4.8	10
9	Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern <i>Anemia caffrorum</i> . New Phytologist, 2021, 231, 1415-1430.	7.3	15
10	Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nature Plants, 2021, 7, 998-1009.	9.3	88
11	Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytologist, 2020, 226, 741-759.	7.3	34
12	Ecophysiological changes and spore formation: two strategies in response to lowâ€temperature and highâ€light stress in <i>Klebsormidium</i> cf. <i>flaccidum</i> (Klebsormidiophyceae,) Tj ETQq0 0 0 rgBT /Overl	oc k.3 0 Tf	50&97 Td (St
13	How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant Journal, 2020, 101, 979-1000.	5.7	42
14	Desiccation Tolerance in Chlorophyllous Fern Spores: Are Ecophysiological Features Related to Environmental Conditions?. Frontiers in Plant Science, 2019, 10, 1130.	3.6	9
15	Life after Harvest: Circadian Regulation in Photosynthetic Pigments of Rocket Leaves during Supermarket Storage Affects the Nutritional Quality. Nutrients, 2019, 11, 1519.	4.1	4
16	Symbiosis at its limits: ecophysiological consequences of lichenization in the genus Prasiola in Antarctica. Annals of Botany, 2019, 124, 1211-1226.	2.9	13
17	Evolution, biosynthesis and protective roles of oligogalactolipids: Key molecules for terrestrial photosynthesis?. Environmental and Experimental Botany, 2019, 164, 135-148.	4.2	7
18	Plant pigment cycles in the high-Arctic Spitsbergen. Polar Biology, 2019, 42, 675-684.	1.2	8

#	Article	IF	Citations
19	Non-invasive diagnosis of viability in seeds and lichens by infrared thermography under controlled environmental conditions. Plant Methods, 2019, 15, 147.	4.3	О
20	Modified Atmosphere Packaging and Dark/Light Refrigerated Storage in Green Leafy Vegetables Have an Impact on Nutritional Value. Plant Foods for Human Nutrition, 2019, 74, 99-106.	3.2	5
21	Rapid colour changes in <i>Euglena sanguinea</i> (Euglenophyceae) caused by internal lipid globule migration. European Journal of Phycology, 2019, 54, 91-101.	2.0	18
22	Unraveling metabolic mechanisms behind chloroplast desiccation tolerance: Chlorophyllous fern spore as a new promising unicellular model. Plant Science, 2019, 281, 251-260.	3.6	9
23	A field portable method for the semiâ€quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. Physiologia Plantarum, 2019, 167, 540-555.	5.2	18
24	When the sun never sets: daily changes in pigment composition in three subarctic woody plants during the summer solstice. Trees - Structure and Function, 2018, 32, 615-630.	1.9	12
25	First evidence of freezing tolerance in a resurrection plant: insights into molecular mobility and zeaxanthin synthesis in the dark. Physiologia Plantarum, 2018, 163, 472-489.	5.2	34
26	On the recalcitrant use of Arnon's method for chlorophyll determination. New Phytologist, 2018, 217, 474-476.	7.3	15
27	Desiccation Tolerance in Ferns: From theÂUnicellular Spore to theÂMulti-tissular Sporophyte. , 2018, , 401-426.		11
28	Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. Environmental and Experimental Botany, 2018, 154, 66-79.	4.2	44
29	Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?. Molecules, 2018, 23, 1741.	3.8	5
30	Plant Photosynthetic Pigments: Methods and Tricks for Correct Quantification and Identification. , 2018, , 29-50.		8
31	Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environmental and Experimental Botany, 2017, 133, 87-97.	4.2	32
32	Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant, Cell and Environment, 2017, 40, 1153-1162.	5.7	26
33	Diversity of winter photoinhibitory responses: a case study in coâ€occurring lichens, mosses, herbs and woody plants from subalpine environments. Physiologia Plantarum, 2017, 160, 282-296.	5.2	31
34	Near-infrared reflectance spectroscopy allows rapid and simultaneous evaluation of chloroplast pigments and antioxidants, carbon isotope discrimination and nitrogen content in Populus spp. leaves. Forest Ecology and Management, 2017, 399, 227-234.	3.2	11
35	Photoprotective Mechanisms in the Genus Quercus in Response to Winter Cold and Summer Drought. Tree Physiology, 2017, , 361-391.	2.5	6
36	Photoprotective Strategies of Mediterranean Plants in Relation to Morphological Traits and Natural Environmental Pressure: A Meta-Analytical Approach. Frontiers in Plant Science, 2017, 8, 1051.	3.6	42

#	Article	IF	CITATIONS
37	Unraveling the Photoprotective Response of Lichenized and Free-Living Green Algae (Trebouxiophyceae, Chlorophyta) to Photochilling Stress. Frontiers in Plant Science, 2017, 8, 1144.	3.6	10
38	Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Frontiers in Plant Science, 2017, 8, 1428.	3.6	27
39	Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. Journal of Plant Physiology, 2016, 191, 82-94.	3.5	29
40	Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in <i>Quercus coccifera</i> L. under Mediterranean conditions. Tree Physiology, 2016, 36, 356-367.	3.1	27
41	Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Functional Plant Biology, 2015, 42, 219.	2.1	27
42	Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests. AoB PLANTS, 2015, 7, plv042.	2.3	14
43	Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and metaâ€analysis. Physiologia Plantarum, 2015, 155, 414-423.	5.2	54
44	Internal and external factors affecting photosynthetic pigment composition in plants: a metaâ€analytical approach. New Phytologist, 2015, 206, 268-280.	7.3	202
45	Opening Pandora's box: cause and impact of errors on plant pigment studies. Frontiers in Plant Science, 2015, 6, 148.	3.6	12
46	Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany, 2015, 119, 63-75.	4.2	124
47	Autofluorescence: Biological functions and technical applications. Plant Science, 2015, 236, 136-145.	3.6	106
48	Does age matter under winter photoinhibitory conditions? A case study in stems and leaves of European mistletoe (Viscum album). Functional Plant Biology, 2015, 42, 175.	2.1	6
49	Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AoB PLANTS, 2015, 7, plv058.	2.3	25
50	Tocochromanols in wood: a potential new tool for dendrometabolomics. Tree Physiology, 2014, 34, 1411-1418.	3.1	2
51	Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology, 2014, 14, 1599.	3.6	68
52	Involvement of a Second Xanthophyll Cycle in Non-Photochemical Quenching of Chlorophyll Fluorescence: The Lutein Epoxide Story. Advances in Photosynthesis and Respiration, 2014, , 277-295.	1.0	17
53	Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions?. Tree Physiology, 2014, 34, 1305-1320.	3.1	13
54	Does plant colour matter? Wax accumulation as an indicator of decline in Juniperus thurifera. Tree Physiology, 2014, 34, 267-274.	3.1	39

#	Article	IF	CITATIONS
55	Gas-exchange, photo- and antioxidant protection, and metal accumulation in I-214 and Eridano Populus sp. clones subjected to elevated zinc concentrations. Environmental and Experimental Botany, 2014, 107, 144-153.	4.2	24
56	Enhancement of zeaxanthin in two-steps by environmental stress induction in rocket and spinach. Food Research International, 2014, 65, 207-214.	6.2	17
57	Beyond Non-Photochemical Fluorescence Quenching: The Overlapping Antioxidant Functions of Zeaxanthin and Tocopherols. Advances in Photosynthesis and Respiration, 2014, , 583-603.	1.0	38
58	Antioxidant and photoprotective responses to elevated CO ₂ and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (nearâ€infrared reflectance spectroscopy). Plant Biology, 2013, 15, 5-17.	3.8	16
59	Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees - Structure and Function, 2013, 27, 229-237.	1.9	17
60	Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 2013, 97, 3119-3128.	3.6	98
61	Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64, 3033-3043.	4.8	86
62	Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia, 2012, 170, 313-323.	2.0	119
63	Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia, 2012, 170, 341-353.	2.0	79
64	Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynthesis Research, 2012, 113, 89-103.	2.9	97
65	Photoprotection mechanisms in Quercus ilex under contrasting climatic conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 557-564.	1.2	38
66	Patterns of spatioâ€temporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. Physiologia Plantarum, 2012, 144, 289-301.	5.2	15
67	Do fern gametophytes have the capacity for irradiance acclimation?. Biologia Plantarum, 2012, 56, 351-356.	1.9	6
68	Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. International Journal of Phytoremediation, 2011, 13, 256-270.	3.1	80
69	Dehydration-mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance?. Planta, 2011, 234, 579-588.	3.2	42
70	Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC Plant Biology, 2011, 11, 181.	3.6	44
71	Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Tree Physiology, 2011, 31, 1128-1141.	3.1	16
72	Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biology, 2010, 33, 885-896.	1.2	23

#	Article	IF	CITATIONS
73	Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta, 2010, 231, 1335-1342.	3.2	53
74	Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L Environmental Pollution, 2010, 158, 1710-1715.	7.5	64
7 5	Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	22
76	Insights into carotenoid dynamics in non-foliar photosynthetic tissues of avocado. Physiologia Plantarum, 2010, 140, 69-78.	5.2	8
77	High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L Journal of Plant Physiology, 2010, 167, 1038-1045.	3.5	43
78	Operation and regulation of the lutein epoxide cycle in seedlings of Ocotea foetens. Functional Plant Biology, 2010, 37, 859.	2.1	23
79	Lutein epoxide cycle, more than just a forest tale. Plant Signaling and Behavior, 2009, 4, 342-344.	2.4	18
80	Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in <i>Corallina elongata</i> . European Journal of Phycology, 2009, 44, 221-230.	2.0	48
81	Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. Photosynthesis Research, 2009, 101, 77-88.	2.9	25
82	Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and) Tj ETQq0 0 0 rgBT /Overl	oc <u>k</u> 10 Tf	50 382 Td (to
83	Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere, 2009, 74, 259-264.	8.2	64
84	Dark induction of the photoprotective xanthophyll cycle in response to dehydration. Journal of Plant Physiology, 2009, 166, 1734-1744.	3.5	40
85	Photoprotective responses of Mediterranean and Atlantic trees to the extreme heat-wave of summer 2003 in Southwestern Europe. Trees - Structure and Function, 2008, 22, 385-392.	1.9	55
86	Short―and longâ€ŧerm modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (<i>Laurus nobilis</i> L.) and avocado (<i>Persea americana</i> Mill.). Plant Biology, 2008, 10, 288-297.	3.8	21
87	Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L Journal of Plant Physiology, 2008, 165, 1255-1263.	3.5	62
88	Seasonal reversibility of acclimation to irradiance in leaves of common box (Buxus sempervirens L.) in a deciduous forest. Flora: Morphology, Distribution, Functional Ecology of Plants, 2008, 203, 254-260.	1.2	9
89	Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions. Tree Physiology, 2007, 27, 1407-1414.	3.1	21
90	The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Functional Plant Biology, 2007, 34, 759.	2.1	120

#	Article	IF	CITATIONS
91	Plasticity of Photoprotective Mechanisms of Buxus sempervirens L. Leaves in Response to Extreme Temperatures. Plant Biology, 2007, 9, 59-68.	3.8	34
92	New Insights on Glyphosate Mode of Action in Nodular Metabolism:Â Role of Shikimate Accumulation. Journal of Agricultural and Food Chemistry, 2006, 54, 2621-2628.	5.2	111
93	Do light acclimation mechanisms reduce the effects of light-dependent herbicides in duckweed (Lemna) Tj ${\sf ETQq1}$	1.0.78431 1.5	.4 rgBT /Cive
94	Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell and Environment, 2006, 29, 1422-1429.	5.7	62
95	Dynamics of the alpha-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiologia Plantarum, 2005, 125, 333-344.	5.2	18
96	Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?. Journal of Experimental Botany, 2005, 56, 2629-2636.	4.8	69
97	Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist, 2004, 163, 87-97.	7.3	47
98	Role of Red Carotenoids in Photoprotection During Winter Acclimation inBuxus sempervirensLeaves. Plant Biology, 2004, 6, 325-332.	3.8	47
99	Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 2004, 14, 11-18.	2.8	50
100	The lutein epoxide cycle in vegetative buds of woody plants. Functional Plant Biology, 2004, 31, 815.	2.1	31
101	Antioxidant and Pigment Composition during Autumnal Leaf Senescence in Woody Deciduous Species Differing in their Ecological Traits. Plant Biology, 2003, 5, 557-566.	3.8	48
102	Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees - Structure and Function, 2003, 17, 285-291.	1.9	33
103	Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees?. Plant, Cell and Environment, 2003, 26, 1787-1801.	5.7	83
104	The operation of the lutein epoxide cycle correlates with energy dissipation. Functional Plant Biology, 2003, 30, 319.	2.1	76
105	Occurrence and operation of the lutein epoxide cycle in Quercus species. Functional Plant Biology, 2002, 29, 1075.	2.1	48
106	Regulation of the xanthophyll cycle pool size in duckweed (Lemna minor) plants. Physiologia Plantarum, 2002, 116, 121-126.	5.2	23
107	Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiology and Biochemistry, 2002, 40, 859-863.	5.8	66
108	Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Functional Plant Biology, 2001, 28, 225.	2.1	43

#	Article	IF	Citations
109	Photoprotective Responses to Winter Stress in Evergreen Mediterranean Ecosystems. Plant Biology, 2000, 2, 530-535.	3.8	57
110	Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins. Trees - Structure and Function, 2000, 14, 339-343.	1.9	23
111	Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees - Structure and Function, 2000, 14, 485-490.	1.9	97
112			