José I GarcÃ-a-Plazaola

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/717192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Internal and external factors affecting photosynthetic pigment composition in plants: a metaâ€analytical approach. New Phytologist, 2015, 206, 268-280.	7.3	202
2	A rapid high-performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 1999, 10, 307-313.	2.4	172
3	Versatility of carotenoids: An integrated view on diversity, evolution, functional roles and environmental interactions. Environmental and Experimental Botany, 2015, 119, 63-75.	4.2	124
4	The lutein epoxide cycle in higher plants: its relationships to other xanthophyll cycles and possible functions. Functional Plant Biology, 2007, 34, 759.	2.1	120
5	Physiology of the seasonal relationship between the photochemical reflectance index and photosynthetic light use efficiency. Oecologia, 2012, 170, 313-323.	2.0	119
6	Diurnal changes in photoprotective mechanisms in leaves of cork oak (Quercus suber) during summer. Tree Physiology, 1996, 16, 115-123.	3.1	115
7	New Insights on Glyphosate Mode of Action in Nodular Metabolism:Â Role of Shikimate Accumulation. Journal of Agricultural and Food Chemistry, 2006, 54, 2621-2628.	5.2	111
8	Autofluorescence: Biological functions and technical applications. Plant Science, 2015, 236, 136-145.	3.6	106
9	Effectiveness of arbuscular mycorrhizal fungi (AMF) for inducing the accumulation of major carotenoids, chlorophylls and tocopherol in green and red leaf lettuces. Applied Microbiology and Biotechnology, 2013, 97, 3119-3128.	3.6	98
10	Effects of drought on photoprotective mechanisms in European beech (Fagus sylvatica L.) seedlings from different provenances. Trees - Structure and Function, 2000, 14, 485-490.	1.9	97
11	Thermal energy dissipation and xanthophyll cycles beyond the Arabidopsis model. Photosynthesis Research, 2012, 113, 89-103.	2.9	97
12	Diurnal changes in antioxidant and carotenoid composition in the Mediterranean schlerophyll tree Quercus ilex (L) during winter. Plant Science, 1999, 143, 125-133.	3.6	94
13	Seasonal changes in xanthophyll composition and photosynthesis of cork oak (Quercus suberL.) leaves under mediterranean climate. Journal of Experimental Botany, 1997, 48, 1667-1674.	4.8	91
14	Chlorophyll a fluorescence illuminates a path connecting plant molecular biology to Earth-system science. Nature Plants, 2021, 7, 998-1009.	9.3	88
15	Evidence for the absence of enzymatic reactions in the glassy state. A case study of xanthophyll cycle pigments in the desiccation-tolerant moss Syntrichia ruralis. Journal of Experimental Botany, 2013, 64, 3033-3043.	4.8	86
16	Do the capacity and kinetics for modification of xanthophyll cycle pool size depend on growth irradiance in temperate trees?. Plant, Cell and Environment, 2003, 26, 1787-1801.	5.7	83
17	Native Plant Communities in an Abandoned Pb-Zn Mining Area of Northern Spain: Implications for Phytoremediation and Germplasm Preservation. International Journal of Phytoremediation, 2011, 13, 256-270.	3.1	80
18	Physical factors driving intertidal macroalgae distribution: physiological stress of a dominant fucoid at its southern limit. Oecologia, 2012, 170, 341-353.	2.0	79

#	Article	IF	CITATIONS
19	The operation of the lutein epoxide cycle correlates with energy dissipation. Functional Plant Biology, 2003, 30, 319.	2.1	76
20	Glyphosate Effects on Phenolic Metabolism of Nodulated Soybean (Glycine maxL. Merr.). Journal of Agricultural and Food Chemistry, 1999, 47, 2920-2925.	5.2	69
21	Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues?. Journal of Experimental Botany, 2005, 56, 2629-2636.	4.8	69
22	Side-effects of domestication: cultivated legume seeds contain similar tocopherols and fatty acids but less carotenoids than their wild counterparts. BMC Plant Biology, 2014, 14, 1599.	3.6	68
23	Low light grown duckweed plants are more protected against the toxicity induced by Zn and Cd. Plant Physiology and Biochemistry, 2002, 40, 859-863.	5.8	66
24	Phytoextraction potential of two Rumex acetosa L. accessions collected from metalliferous and non-metalliferous sites: Effect of fertilization. Chemosphere, 2009, 74, 259-264.	8.2	64
25	Differences in EDTA-assisted metal phytoextraction between metallicolous and non-metallicolous accessions of Rumex acetosa L Environmental Pollution, 2010, 158, 1710-1715.	7.5	64
26	Synthesis of low molecular weight thiols in response to Cd exposure in Thlaspi caerulescens. Plant, Cell and Environment, 2006, 29, 1422-1429.	5.7	62
27	Photoprotective implications of leaf variegation in E. dens-canis L. and P. officinalis L Journal of Plant Physiology, 2008, 165, 1255-1263.	3.5	62
28	Photoprotective Responses to Winter Stress in Evergreen Mediterranean Ecosystems. Plant Biology, 2000, 2, 530-535.	3.8	57
29	Distribution and evolutionary trends of photoprotective isoprenoids (xanthophylls and) Tj ETQq1 1 0.784314 rgE	T /Overloc	:k 10 Tf 50 3
30	Photoprotective responses of Mediterranean and Atlantic trees to the extreme heat-wave of summer 2003 in Southwestern Europe. Trees - Structure and Function, 2008, 22, 385-392.	1.9	55
31	Activation of photoprotective winter photoinhibition in plants from different environments: a literature compilation and metaâ€analysis. Physiologia Plantarum, 2015, 155, 414-423.	5.2	54
32	Unravelling the roles of desiccation-induced xanthophyll cycle activity in darkness: a case study in Lobaria pulmonaria. Planta, 2010, 231, 1335-1342.	3.2	53
33	Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza, 2004, 14, 11-18.	2.8	50
34	Occurrence and operation of the lutein epoxide cycle in Quercus species. Functional Plant Biology, 2002, 29, 1075.	2.1	48
35	Antioxidant and Pigment Composition during Autumnal Leaf Senescence in Woody Deciduous Species Differing in their Ecological Traits. Plant Biology, 2003, 5, 557-566.	3.8	48
36	Carotenoid composition in Rhodophyta: insights into xanthophyll regulation in <i>Corallina elongata</i> . European Journal of Phycology, 2009, 44, 221-230.	2.0	48

JOSé I GARCÃA-PLAZAOLA

#	Article	IF	CITATIONS
37	Acclimation of antioxidant pools to the light environment in a natural forest canopy. New Phytologist, 2004, 163, 87-97.	7.3	47
38	Role of Red Carotenoids in Photoprotection During Winter Acclimation inBuxus sempervirensLeaves. Plant Biology, 2004, 6, 325-332.	3.8	47
39	Activation of violaxanthin cycle in darkness is a common response to different abiotic stresses: a case study in Pelvetia canaliculata. BMC Plant Biology, 2011, 11, 181.	3.6	44
40	Shared mechanisms of photoprotection in photosynthetic organisms tolerant to desiccation or to low temperature. Environmental and Experimental Botany, 2018, 154, 66-79.	4.2	44
41	Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Functional Plant Biology, 2001, 28, 225.	2.1	43
42	High irradiance induces photoprotective mechanisms and a positive effect on NH4+ stress in Pisum sativum L Journal of Plant Physiology, 2010, 167, 1038-1045.	3.5	43
43	Dehydration-mediated activation of the xanthophyll cycle in darkness: is it related to desiccation tolerance?. Planta, 2011, 234, 579-588.	3.2	42
44	Photoprotective Strategies of Mediterranean Plants in Relation to Morphological Traits and Natural Environmental Pressure: A Meta-Analytical Approach. Frontiers in Plant Science, 2017, 8, 1051.	3.6	42
45	How do vascular plants perform photosynthesis in extreme environments? An integrative ecophysiological and biochemical story. Plant Journal, 2020, 101, 979-1000.	5.7	42
46	Dark induction of the photoprotective xanthophyll cycle in response to dehydration. Journal of Plant Physiology, 2009, 166, 1734-1744.	3.5	40
47	Does plant colour matter? Wax accumulation as an indicator of decline in Juniperus thurifera. Tree Physiology, 2014, 34, 267-274.	3.1	39
48	Photoprotection mechanisms in Quercus ilex under contrasting climatic conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2012, 207, 557-564.	1.2	38
49	Beyond Non-Photochemical Fluorescence Quenching: The Overlapping Antioxidant Functions of Zeaxanthin and Tocopherols. Advances in Photosynthesis and Respiration, 2014, , 583-603.	1.0	38
50	Shedding light on the dark side of xanthophyll cycles. New Phytologist, 2021, 230, 1336-1344.	7.3	37
51	Plasticity of Photoprotective Mechanisms ofBuxus sempervirensL. Leaves in Response to Extreme Temperatures. Plant Biology, 2007, 9, 59-68.	3.8	34
52	First evidence of freezing tolerance in a resurrection plant: insights into molecular mobility and zeaxanthin synthesis in the dark. Physiologia Plantarum, 2018, 163, 472-489.	5.2	34
53	Born to revive: molecular and physiological mechanisms of double tolerance in a paleotropical and resurrection plant. New Phytologist, 2020, 226, 741-759.	7.3	34
54	Photoprotection in evergreen Mediterranean plants during sudden periods of intense cold weather. Trees - Structure and Function, 2003, 17, 285-291.	1.9	33

JOSé I GARCÃA-PLAZAOLA

#	Article	IF	CITATIONS
55	Emissions of carotenoid cleavage products upon heat shock and mechanical wounding from a foliose lichen. Environmental and Experimental Botany, 2017, 133, 87-97.	4.2	32
56	Effect of low nitrate supply to nodulated lucerne on time course of activites of enzymes involved in inorganic nitrogen metabolism. Physiologia Plantarum, 1990, 80, 185-190.	5.2	31
57	The lutein epoxide cycle in vegetative buds of woody plants. Functional Plant Biology, 2004, 31, 815.	2.1	31
58	Diversity of winter photoinhibitory responses: a case study in coâ€occurring lichens, mosses, herbs and woody plants from subalpine environments. Physiologia Plantarum, 2017, 160, 282-296.	5.2	31
59	Two Hymenophyllaceae species from contrasting natural environments exhibit a homoiochlorophyllous strategy in response to desiccation stress. Journal of Plant Physiology, 2016, 191, 82-94.	3.5	29
60	Resilience of a semi-deciduous shrub, Cistus salvifolius, to severe summer drought and heat stress. Functional Plant Biology, 2015, 42, 219.	2.1	27
61	Leaf functional plasticity decreases the water consumption without further consequences for carbon uptake in <i>Quercus coccifera</i> L. under Mediterranean conditions. Tree Physiology, 2016, 36, 356-367.	3.1	27
62	Seed Carotenoid and Tocochromanol Composition of Wild Fabaceae Species Is Shaped by Phylogeny and Ecological Factors. Frontiers in Plant Science, 2017, 8, 1428.	3.6	27
63	Endogenous circadian rhythms in pigment composition induce changes in photochemical efficiency in plant canopies. Plant, Cell and Environment, 2017, 40, 1153-1162.	5.7	26
64	Denitrifying ability of thirteen Rhizobium meliloti strains. Plant and Soil, 1993, 149, 43-50.	3.7	25
65	Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. Photosynthesis Research, 2009, 101, 77-88.	2.9	25
66	Photosynthetic responses of trees in high-elevation forests: comparing evergreen species along an elevation gradient in the Central Andes. AoB PLANTS, 2015, 7, plv058.	2.3	25
67	Gas-exchange, photo- and antioxidant protection, and metal accumulation in I-214 and Eridano Populus sp. clones subjected to elevated zinc concentrations. Environmental and Experimental Botany, 2014, 107, 144-153.	4.2	24
68	Photoprotection mechanisms in European beech (Fagus sylvatica L.) seedlings from diverse climatic origins. Trees - Structure and Function, 2000, 14, 339-343.	1.9	23
69	Regulation of the xanthophyll cycle pool size in duckweed (Lemna minor) plants. Physiologia Plantarum, 2002, 116, 121-126.	5.2	23
70	Leaf functional and micro-morphological photoprotective attributes in two ecotypes of Colobanthus quitensis from the Andes and Maritime Antarctic. Polar Biology, 2010, 33, 885-896.	1.2	23
71	Operation and regulation of the lutein epoxide cycle in seedlings of Ocotea foetens. Functional Plant Biology, 2010, 37, 859.	2.1	23
72	Ageing and irradiance enhance vitamin E content in green edible tissues from crop plants. Journal of the Science of Food and Agriculture, 2010, 90, n/a-n/a.	3.5	22

JOSé I GARCÃA-PLAZAOLA

#	Article	IF	CITATIONS
73	Dynamics of violaxanthin and lutein epoxide xanthophyll cycles in Lauraceae tree species under field conditions. Tree Physiology, 2007, 27, 1407-1414.	3.1	21
74	Short―and longâ€ŧerm modulation of the lutein epoxide and violaxanthin cycles in two species of the Lauraceae: sweet bay laurel (<i>Laurus nobilis</i> L.) and avocado (<i>Persea americana</i> Mill.). Plant Biology, 2008, 10, 288-297.	3.8	21
75	Dynamics of the alpha-tocopherol pool as affected by external (environmental) and internal (leaf age) factors in Buxus sempervirens leaves. Physiologia Plantarum, 2005, 125, 333-344.	5.2	18
76	Lutein epoxide cycle, more than just a forest tale. Plant Signaling and Behavior, 2009, 4, 342-344.	2.4	18
77	Rapid colour changes in <i>Euglena sanguinea</i> (Euglenophyceae) caused by internal lipid globule migration. European Journal of Phycology, 2019, 54, 91-101.	2.0	18
78	A field portable method for the semiâ€quantitative estimation of dehydration tolerance of photosynthetic tissues across distantly related land plants. Physiologia Plantarum, 2019, 167, 540-555.	5.2	18
79	The contribution of Rhizobium meliloti to soil denitrification. Plant and Soil, 1993, 157, 207-213.	3.7	17
80	Salt crystal deposition as a reversible mechanism to enhance photoprotection in black mangrove. Trees - Structure and Function, 2013, 27, 229-237.	1.9	17
81	Involvement of a Second Xanthophyll Cycle in Non-Photochemical Quenching of Chlorophyll Fluorescence: The Lutein Epoxide Story. Advances in Photosynthesis and Respiration, 2014, , 277-295.	1.0	17
82	Enhancement of zeaxanthin in two-steps by environmental stress induction in rocket and spinach. Food Research International, 2014, 65, 207-214.	6.2	17
83	Tree size and light availability increase photochemical instead of non-photochemical capacities of Nothofagus nitida trees growing in an evergreen temperate rain forest. Tree Physiology, 2011, 31, 1128-1141.	3.1	16
84	Antioxidant and photoprotective responses to elevated CO ₂ and heat stress during holm oak regeneration by resprouting, evaluated with NIRS (nearâ€infrared reflectance spectroscopy). Plant Biology, 2013, 15, 5-17.	3.8	16
85	Patterns of spatioâ€ŧemporal distribution of winter chronic photoinhibition in leaves of three evergreen Mediterranean species with contrasting acclimation responses. Physiologia Plantarum, 2012, 144, 289-301.	5.2	15
86	On the recalcitrant use of Arnon's method for chlorophyll determination. New Phytologist, 2018, 217, 474-476.	7.3	15
87	Photoprotective compounds as early markers to predict holm oak crown defoliation in declining Mediterranean savannahs. Tree Physiology, 2022, 42, 208-224.	3.1	15
88	Differences in biochemical, gas exchange and hydraulic response to water stress in desiccation tolerant and sensitive fronds of the fern <i>Anemia caffrorum</i> . New Phytologist, 2021, 231, 1415-1430.	7.3	15
89	Distribution of nitrate reductase activity in nodulated lucerne plants. Plant and Soil, 1991, 131, 107-113.	3.7	14
90	Ecophysiological roles of abaxial anthocyanins in a perennial understorey herb from temperate deciduous forests. AoB PLANTS, 2015, 7, plv042.	2.3	14

#	Article	IF	CITATIONS
91	Acclimation of leaf cohorts expanded under light and water stresses: an adaptive mechanism of Eucryphia cordifolia to face changes in climatic conditions?. Tree Physiology, 2014, 34, 1305-1320.	3.1	13
92	Symbiosis at its limits: ecophysiological consequences of lichenization in the genus Prasiola in Antarctica. Annals of Botany, 2019, 124, 1211-1226.	2.9	13
93	Combined dynamics of the 500–600Ânm leaf absorption and chlorophyll fluorescence changes in vivo: Evidence for the multifunctional energy quenching role of xanthophylls. Biochimica Et Biophysica Acta - Bioenergetics, 2021, 1862, 148351.	1.0	13

#	Article	IF	CITATIONS
109	Ecophysiological changes and spore formation: two strategies in response to lowâ€ŧemperature and highâ€ŀight stress in <i>Klebsormidium</i> cf. <i>flaccidum</i> (Klebsormidiophyceae,) Tj ETQq1 1 0.784314 rgB1	⊺ ‡Q₃ verlocl	ka0 Tf 50
110	Denitrification in lucerne nodules is not involved in nitrite detoxification. Plant and Soil, 1996, 182, 149-155.	3.7	7
111	Evolution, biosynthesis and protective roles of oligogalactolipids: Key molecules for terrestrial photosynthesis?. Environmental and Experimental Botany, 2019, 164, 135-148.	4.2	7
112	Do fern gametophytes have the capacity for irradiance acclimation?. Biologia Plantarum, 2012, 56, 351-356.	1.9	6
113	Does age matter under winter photoinhibitory conditions? A case study in stems and leaves of European mistletoe (Viscum album). Functional Plant Biology, 2015, 42, 175.	2.1	6
114	Photoprotective Mechanisms in the Genus Quercus in Response to Winter Cold and Summer Drought. Tree Physiology, 2017, , 361-391.	2.5	6
115	Can Parietin Transfer Energy Radiatively to Photosynthetic Pigments?. Molecules, 2018, 23, 1741.	3.8	5
116	Modified Atmosphere Packaging and Dark/Light Refrigerated Storage in Green Leafy Vegetables Have an Impact on Nutritional Value. Plant Foods for Human Nutrition, 2019, 74, 99-106.	3.2	5
117	Do light acclimation mechanisms reduce the effects of light-dependent herbicides in duckweed (Lemna) Tj ETQq1	1,0,78431 1,5	14 rgBT /O
118	Life after Harvest: Circadian Regulation in Photosynthetic Pigments of Rocket Leaves during Supermarket Storage Affects the Nutritional Quality. Nutrients, 2019, 11, 1519.	4.1	4
119	A rapid highâ€performance liquid chromatography method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochemical Analysis, 1999, 10, 307-313.	2.4	4
120	Title is missing!. Plant and Soil, 1999, 216, 139-145.	3.7	3
121	Tocochromanols in wood: a potential new tool for dendrometabolomics. Tree Physiology, 2014, 34, 1411-1418.	3.1	2
122	Effect of low nitrate supply to nodulated lucerne on time course of activites of enzymes involved in inorganic nitrogen metabolism. Physiologia Plantarum, 1990, 80, 185-190.	5.2	2
123	Cell-level anatomy explains leaf age-dependent declines in mesophyll conductance and photosynthetic capacity in the evergreen Mediterranean oak <i>Quercus ilex</i> subsp. <i>rotundifolia</i> . Tree Physiology, 2022, , .	3.1	2
124	Assessing Plant Pigment Regulation in Circadian Experiments. Methods in Molecular Biology, 2022, 2494, 135-148.	0.9	1
125	Non-invasive diagnosis of viability in seeds and lichens by infrared thermography under controlled environmental conditions. Plant Methods, 2019, 15, 147.	4.3	0