
Mark A Kramer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dopamine depletion selectively disrupts interactions between striatal neuron subtypes and LFP oscillations. Cell Reports, 2022, 38, 110265.	6.4	12
2	Quantifying seizure termination patterns reveals limited pathways to seizure end. Neurobiology of Disease, 2022, 165, 105645.	4.4	11
3	Source EEG reveals that Rolandic epilepsy is a regional epileptic encephalopathy. NeuroImage: Clinical, 2022, 33, 102956.	2.7	14
4	Spike ripples in striatum correlate with seizure risk in two mouse models. Epilepsy and Behavior Reports, 2022, 18, 100529.	1.0	2
5	Longitudinal EEG model detects antisense oligonucleotide treatment effect and increased UBE3A in Angelman syndrome. Brain Communications, 2022, 4, .	3.3	5
6	Delta power robustly predicts cognitive function in Angelman syndrome. Annals of Clinical and Translational Neurology, 2021, 8, 1433-1445.	3.7	23
7	Application of a convolutional neural network for fully-automated detection of spike ripples in the scalp electroencephalogram. Journal of Neuroscience Methods, 2021, 360, 109239.	2.5	7
8	Diazepam induced sleep spindle increase correlates with cognitive recovery in a child with epileptic encephalopathy. BMC Neurology, 2021, 21, 355.	1.8	10
9	A state space modeling approach to real-time phase estimation. ELife, 2021, 10, .	6.0	24
10	Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. Journal of Neuroscience, 2021, 41, 1816-1829.	3.6	45
11	The natural history of seizures and neuropsychiatric symptoms in childhood epilepsy with centrotemporal spikes (CECTS). Epilepsy and Behavior, 2020, 103, 106437.	1.7	34
12	Emerging roles of network analysis for epilepsy. Epilepsy Research, 2020, 159, 106255.	1.6	49
13	Persistent abnormalities in Rolandic thalamocortical white matter circuits in childhood epilepsy with centrotemporal spikes. Epilepsia, 2020, 61, 2500-2508.	5.1	14
14	Robust dynamic community detection with applications to human brain functional networks. Nature Communications, 2020, 11, 2785.	12.8	31
15	Seizure onset location shapes dynamics of initiation. Clinical Neurophysiology, 2020, 131, 1782-1797.	1.5	17
16	Dysmature superficial white matter microstructure in developmental focal epilepsy. Brain Communications, 2019, 1, fcz002.	3.3	18
17	Scalp recorded spike ripples predict seizure risk in childhood epilepsy better than spikes. Brain, 2019, 142, 1296-1309.	7.6	60
18	Unique contributions of parvalbumin and cholinergic interneurons in organizing striatal networks during movement. Nature Neuroscience, 2019, 22, 586-597.	14.8	94

MARK A KRAMER

#	Article	IF	CITATIONS
19	Beta oscillations in the sensorimotor cortex correlate with disease and remission in benign epilepsy with centrotemporal spikes. Brain and Behavior, 2019, 9, e01237.	2.2	5
20	The probability of seizures during continuous EEG monitoring in highâ€risk neonates. Epilepsia, 2019, 60, 2508-2518.	5.1	17
21	A statistical framework to assess cross-frequency coupling while accounting for confounding analysis effects. ELife, 2019, 8, .	6.0	9
22	The effect of inhibition on the existence of traveling wave solutions for a neural field model of human seizure termination. Journal of Computational Neuroscience, 2018, 44, 393-409.	1.0	6
23	A procedure to increase the power of Granger-causal analysis through temporal smoothing. Journal of Neuroscience Methods, 2018, 308, 48-61.	2.5	7
24	lctal and preictal power changes outside of the seizure focus correlate with seizure generalization. Epilepsia, 2018, 59, 1398-1409.	5.1	24
25	Human seizures couple across spatial scales through travelling wave dynamics. Nature Communications, 2017, 8, 14896.	12.8	105
26	A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram. Journal of Neuroscience Methods, 2017, 277, 46-55.	2.5	27
27	Dynamic connectivity modulates local activity in the core regions of the default-mode network. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9713-9718.	7.1	49
28	Treating refractory mental illness with closed-loop brain stimulation: Progress towards a patient-specific transdiagnostic approach. Experimental Neurology, 2017, 287, 461-472.	4.1	94
29	Multiscale network analysis through tail-greedy bottom-up approximation, with applications in neuroscience. , 2017, , .		0
30	Amplitude-Modulated Bursting: A Novel Class of Bursting Rhythms. Physical Review Letters, 2016, 117, 268101.	7.8	26
31	Percolation under noise: Detecting explosive percolation using the second-largest component. Physical Review E, 2016, 93, 052301.	2.1	6
32	EEG functional connectivity is partially predicted by underlying white matter connectivity. Neurolmage, 2015, 108, 23-33.	4.2	95
33	Rate-adjusted spike–LFP coherence comparisons from spike-train statistics. Journal of Neuroscience Methods, 2015, 240, 141-153.	2.5	12
34	Slow Spatial Recruitment of Neocortex during Secondarily Generalized Seizures and Its Relation to Surgical Outcome. Journal of Neuroscience, 2015, 35, 9477-9490.	3.6	40
35	A Biologically Constrained, Mathematical Model of Cortical Wave Propagation Preceding Seizure Termination. PLoS Computational Biology, 2015, 11, e1004065.	3.2	43
36	Age-Related Changes in 1/ <i>f</i> Neural Electrophysiological Noise. Journal of Neuroscience, 2015, 35, 13257-13265.	3.6	479

MARK A KRAMER

#	Article	IF	CITATIONS
37	Robust disruptions in electroencephalogram cortical oscillations and large-scale functional networks in autism. BMC Neurology, 2015, 15, 97.	1.8	32
38	Physiology of functional and effective networks in epilepsy. Clinical Neurophysiology, 2015, 126, 227-236.	1.5	107
39	A Unified Approach to Linking Experimental, Statistical and Computational Analysis of Spike Train Data. PLoS ONE, 2014, 9, e85269.	2.5	22
40	Assessing dynamics, spatial scale, and uncertainty in task-related brain network analyses. Frontiers in Computational Neuroscience, 2014, 8, 31.	2.1	9
41	Beyond the Connectome: The Dynome. Neuron, 2014, 83, 1319-1328.	8.1	315
42	A statistically robust EEG re-referencing procedure to mitigate reference effect. Journal of Neuroscience Methods, 2014, 235, 101-116.	2.5	26
43	The maturation of cortical sleep rhythms and networks over early development. Clinical Neurophysiology, 2014, 125, 1360-1370.	1.5	43
44	Assessment of cross-frequency coupling with confidence using generalized linear models. Journal of Neuroscience Methods, 2013, 220, 64-74.	2.5	43
45	Introduction to Focus Issue: Rhythms and Dynamic Transitions in Neurological Disease: Modeling, Computation, and Experiment. Chaos, 2013, 23, 046001.	2.5	10
46	Some Sampling Properties of Common Phase Estimators. Neural Computation, 2013, 25, 901-921.	2.2	12
47	Human seizures self-terminate across spatial scales via a critical transition. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21116-21121.	7.1	182
48	Emergence of Stable Functional Networks in Long-Term Human Electroencephalography. Journal of Neuroscience, 2012, 32, 2703-2713.	3.6	153
49	Epilepsy as a Disorder of Cortical Network Organization. Neuroscientist, 2012, 18, 360-372.	3.5	426
50	Emergence of Persistent Networks in Long-Term Intracranial EEG Recordings. Journal of Neuroscience, 2011, 31, 15757-15767.	3.6	125
51	Coalescence and Fragmentation of Cortical Networks during Focal Seizures. Journal of Neuroscience, 2010, 30, 10076-10085.	3.6	225
52	Cortical Networks Produce Three Distinct 7–12 Hz Rhythms during Single Sensory Responses in the Awake Rat. Journal of Neuroscience, 2010, 30, 4315-4324.	3.6	40
53	Network inference with confidence from multivariate time series. Physical Review E, 2009, 79, 061916.	2.1	107
54	Sharp edge artifacts and spurious coupling in EEG frequency comodulation measures. Journal of Neuroscience Methods, 2008, 170, 352-357.	2.5	187

Mark A Kramer

#	Article	IF	CITATIONS
55	New Dynamics in Cerebellar Purkinje Cells: Torus Canards. Physical Review Letters, 2008, 101, 068103.	7.8	70
56	Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 20517-20522.	7.1	700
57	Rhythm Generation through Period Concatenation in Rat Somatosensory Cortex. PLoS Computational Biology, 2008, 4, e1000169.	3.2	116
58	Temporal interactions between cortical rhythms. Frontiers in Neuroscience, 2008, 2, 145-154.	2.8	157