Yuguang Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171317/publications.pdf Version: 2024-02-01

YUCHANG SHI

#	Article	IF	CITATIONS
1	Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome. Autophagy, 2022, 18, 2134-2149.	9.1	10
2	De novo labeling and trafficking of individual lipid species in live cells. Molecular Metabolism, 2022, 61, 101511.	6.5	4
3	In Search of the Holy Grail: Toward a Unified Hypothesis on Mitochondrial Dysfunction in Age-Related Diseases. Cells, 2022, 11, 1906.	4.1	10
4	Pharmacological inhibition of ALCAT1 mitigates amyotrophic lateral sclerosis by attenuating SOD1 protein aggregation. Molecular Metabolism, 2022, 63, 101536.	6.5	7
5	Cardiolipin remodeling by ALCAT1 links hypoxia to coronary artery disease by promoting mitochondrial dysfunction. Molecular Therapy, 2021, 29, 3498-3511.	8.2	18
6	Insulin Resistance in Skeletal Muscle Selectively Protects the Heart in Response to Metabolic Stress. Diabetes, 2021, 70, 2333-2343.	0.6	4
7	LRG1 is an adipokine that mediates obesity-induced hepatosteatosis and insulin resistance. Journal of Clinical Investigation, 2021, 131, .	8.2	30
8	Aster-B coordinates with Arf1 to regulate mitochondrial cholesterol transport. Molecular Metabolism, 2020, 42, 101055.	6.5	24
9	Aster coordinates with COP I vesicles to regulate lysosomal trafficking and activation of mTORC1. EMBO Reports, 2020, 21, e49898.	4.5	17
10	Role of Mitochondria in the Regulation of Kidney Function and Metabolism in Type 2 Diabetes. , 2019, , 287-300.		0
11	Defective Phosphatidylglycerol Remodeling Causes Hepatopathy, Linking Mitochondrial Dysfunction to Hepatosteatosis. Cellular and Molecular Gastroenterology and Hepatology, 2019, 7, 763-781.	4.5	32
12	Cardiolipin remodeling by ALCAT1 links mitochondrial dysfunction to Parkinson's diseases. Aging Cell, 2019, 18, e12941.	6.7	45
13	Regulation of autophagy by mitochondrial phospholipids in health and diseases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 114-129.	2.4	61
14	ALCAT1 controls mitochondrial etiology of fatty liver diseases, linking defective mitophagy to steatosis. Hepatology, 2015, 61, 486-496.	7.3	114
15	Cardiolipin remodeling by TAZ/tafazzin is selectively required for the initiation of mitophagy. Autophagy, 2015, 11, 643-652.	9.1	84
16	Comparative Gene Identification-58 (CGI-58) Promotes Autophagy as a Putative Lysophosphatidylglycerol Acyltransferase. Journal of Biological Chemistry, 2014, 289, 33044-33053.	3.4	29
17	Monoacylglycerol Acyltransferase-2 Is a Tetrameric Enzyme That Selectively Heterodimerizes with Diacylglycerol Acyltransferase-1. Journal of Biological Chemistry, 2014, 289, 10909-10918.	3.4	24
18	Lysocardiolipin acyltransferase 1 (ALCAT1) controls mitochondrial DNA fidelity and biogenesis through modulation of MFN2 expression. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6975-6980.	7.1	74

YUGUANG SHI

#	Article	IF	CITATIONS
19	Ablation of ALCAT1 Mitigates Hypertrophic Cardiomyopathy through Effects on Oxidative Stress and Mitophagy. Molecular and Cellular Biology, 2012, 32, 4493-4504.	2.3	78
20	Synapses of Amphids Defective (SAD-A) Kinase Promotes Glucose-stimulated Insulin Secretion through Activation of p21-activated Kinase (PAK1) in Pancreatic β-Cells. Journal of Biological Chemistry, 2012, 287, 26435-26444.	3.4	33
21	Cardiolipin Remodeling by ALCAT1 Links Oxidative Stress and Mitochondrial Dysfunction to Obesity. Cell Metabolism, 2010, 12, 154-165.	16.2	233
22	Emerging roles of cardiolipin remodeling in mitochondrial dysfunction associated with diabetes, obesity, and cardiovascular diseases. Journal of Biomedical Research, 2010, 24, 6-15.	1.6	95
23	Beyond triglyceride synthesis: the dynamic functional roles of MGAT and DGAT enzymes in energy metabolism. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E10-E18.	3.5	175
24	ALCAT1 is a polyglycerophospholipid acyltransferase potently regulated by adenine nucleotide and thyroid status. American Journal of Physiology - Endocrinology and Metabolism, 2009, 296, E647-E653.	3.5	46
25	Identification and functional characterization of hCLS1, a human cardiolipin synthase localized in mitochondria. Biochemical Journal, 2006, 398, 169-176.	3.7	88
26	Identification and Characterization of a Gene Encoding Human LPGAT1, an Endoplasmic Reticulum-associated Lysophosphatidylglycerol Acyltransferase. Journal of Biological Chemistry, 2004, 279, 55866-55874.	3.4	87
27	A Novel Cardiolipin-remodeling Pathway Revealed by a Gene Encoding an Endoplasmic Reticulum-associated Acyl-CoA:Lysocardiolipin Acyltransferase (ALCAT1) in Mouse. Journal of Biological Chemistry, 2004, 279, 31727-31734.	3.4	191