
William Shaw

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cold Pools in the Columbia Basin. Weather and Forecasting, 2001, 16, 432-447.	0.5	148
2	Basin-scale wind transport during the MILAGRO field campaign and comparison to climatology using cluster analysis. Atmospheric Chemistry and Physics, 2008, 8, 1209-1224.	1.9	130
3	Particulate Air Pollution in Mexico City: A Collaborative Research Project. Journal of the Air and Waste Management Association, 1999, 49, 1221-1229.	0.9	125
4	The T1-T2 study: evolution of aerosol properties downwind of Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 1585-1598.	1.9	124
5	The IMADA-AVER Boundary Layer Experiment in the Mexico City Area. Bulletin of the American Meteorological Society, 1998, 79, 2497-2508.	1.7	100
6	Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.	1.9	94
7	Meteorological Processes Affecting the Evolution of a Wintertime Cold Air Pool in the Columbia Basin. Monthly Weather Review, 2001, 129, 2600-2613.	0.5	78
8	Evaluation of an Inexpensive Temperature Datalogger for Meteorological Applications. Journal of Atmospheric and Oceanic Technology, 2000, 17, 77-81.	0.5	72
9	Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 1759-1783.	1.9	67
10	Assessing State-of-the-Art Capabilities for Probing the Atmospheric Boundary Layer: The XPIA Field Campaign. Bulletin of the American Meteorological Society, 2017, 98, 289-314.	1.7	59
11	Boundary Layer Characteristics over Areas of Inhomogeneous Surface Fluxes. Journal of Applied Meteorology and Climatology, 1995, 34, 559-571.	1.7	58
12	Sensitivity of Turbine-Height Wind Speeds to Parameters in Planetary Boundary-Layer and Surface-Layer Schemes in the Weather Research and Forecasting Model. Boundary-Layer Meteorology, 2017, 162, 117-142.	1.2	56
13	The Second Wind Forecast Improvement Project (WFIP2): Observational Field Campaign. Bulletin of the American Meteorological Society, 2019, 100, 1701-1723.	1.7	55
14	The evolution of the boundary layer and its effect on air chemistry in the Phoenix area. Journal of Geophysical Research, 2000, 105, 22833-22848.	3.3	53
15	On Bridging A Modeling Scale Gap: Mesoscale to Microscale Coupling for Wind Energy. Bulletin of the American Meteorological Society, 2019, 100, 2533-2550.	1.7	53
16	An international turbulence comparison experiment (ITCE 1976). Boundary-Layer Meteorology, 1982, 24, 181-209.	1.2	52
17	The response of the marine boundary layer to mesoscale variations in sea-surface temperature. Dynamics of Atmospheres and Oceans, 1984, 8, 267-281.	0.7	52
18	Comparison of Measured and Numerically Simulated Turbulence Statistics in a Convective Boundary Layer Over Complex Terrain. Boundary-Layer Meteorology, 2017, 163, 69-89.	1.2	49

WILLIAM SHAW

#	Article	IF	CITATIONS
19	The Second Wind Forecast Improvement Project (WFIP2): General Overview. Bulletin of the American Meteorological Society, 2019, 100, 1687-1699.	1.7	45
20	Influence of Subgrid Variability on Surface Hydrology. Journal of Climate, 1997, 10, 3157-3166.	1.2	39
21	Turbineâ€scale wind field measurements using dualâ€Đoppler lidar. Wind Energy, 2015, 18, 219-235.	1.9	34
22	Intermittency and the Organization of Turbulence in the Near-Neutral Marine Atmospheric Boundary Layer. Journals of the Atmospheric Sciences, 1985, 42, 2563-2584.	0.6	31
23	A technique for determining the spatial and temporal distributions of surface fluxes of heat and moisture over the Southern Great Plains Cloud and Radiation Testbed. Journal of Geophysical Research, 1998, 103, 6109-6121.	3.3	30
24	Research Needs For Wind Resource Characterization. Bulletin of the American Meteorological Society, 2009, 90, 535-538.	1.7	25
25	Observations of Systematic Boundary Layer Divergence Patterns and Their Relationship to Land Use and Topography. Journal of Climate, 2001, 14, 1753-1764.	1.2	23
26	Large-eddy simulation sensitivities to variations of configuration and forcing parameters in canonical boundary-layer flows for wind energy applications. Wind Energy Science, 2018, 3, 589-613.	1.2	22
27	Observations of Spatial Variations of Boundary Layer Structure over the Southern Great Plains Cloud and Radiation Testbed. Journal of Applied Meteorology and Climatology, 1997, 36, 1221-1231.	1.7	19
28	Effect of aerosols and NO ₂ concentration on ultraviolet actinic flux near Mexico City during MILAGRO: measurements and model calculations. Atmospheric Chemistry and Physics, 2013, 13, 1011-1022.	1.9	19
29	The Effect of and Correction for Different Wet-Bulb and Dry-Bulb Response in Thermocouple Psychrometry. Journal of Applied Meteorology, 1980, 19, 90-97.	1.1	17
30	Vertical profiles of the 3-D wind velocity retrieved from multiple wind lidars performing triple range-height-indicator scans. Atmospheric Measurement Techniques, 2017, 10, 431-444.	1.2	16
31	Influence of wind speed averaging on estimates of dimethylsulfide emission fluxes. Journal of Geophysical Research, 2002, 107, ACH 1-1-ACH 1-10.	3.3	15
32	Data assimilation impact of in situ and remote sensing meteorological observations on wind power forecasts during the first W ind F orecast I mprovement P roject (WFIP). Wind Energy, 2019, 22, 932-944.	1.9	13
33	Modification of Summertime Arctic Cloud Characteristics between a Coastal and Inland Site. Journal of Climate, 2006, 19, 3207-3219.	1.2	8
34	Evaluating the WFIP2 updates to the HRRR model using scanning Doppler lidar measurements in the columbia River Basin. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	8
35	Semantic catalog of things, services, and data to support a wind data management facility. Information Systems Frontiers, 2016, 18, 679-691.	4.1	6
36	A Laboratory in the Sky NEW FRONTIERS IN MEASUREMENTS ALOFT. Environmental Science & Technology, 1994, 28, 412A-420A.	4.6	2

#	Article	IF	CITATIONS
37	Dual-Doppler Lidar for Measurement of Wind Turbine Inflow-Outflow and Wake Effects. , 2012, , .		2
38	Coments on ?derivation of water vapor fluxes from lidar measurements? by W. E. Eichingeret al Boundary-Layer Meteorology, 1994, 68, 433-437.	1.2	0