
## Dorota Lewińska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7171005/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Formation of disaggregated polymer microspheres by a novel method combining pulsed voltage<br>electrospray and wet phase inversion techniques. Colloids and Surfaces A: Physicochemical and<br>Engineering Aspects, 2022, 648, 129246. | 4.7  | 4         |
| 2  | A one-step in vitro continuous flow assessment of protein release from core-shell polymer<br>microcapsules designed for therapeutic protein delivery. Biocybernetics and Biomedical Engineering,<br>2021, 41, 1347-1364.               | 5.9  | 6         |
| 3  | Polymer microcapsules and microbeads as cell carriers for <i>in vivo</i> biomedical applications.<br>Biomaterials Science, 2020, 8, 1536-1574.                                                                                         | 5.4  | 51        |
| 4  | A Factorial Design for Assessment of the Effect of Selected Process Variables on the Impulse<br>Electrostatic Droplet Formation. Advances in Intelligent Systems and Computing, 2020, , 327-336.                                       | 0.6  | 0         |
| 5  | Polymer fibers electrospun using pulsed voltage. Materials and Design, 2019, 183, 108106.                                                                                                                                              | 7.0  | 23        |
| 6  | Effect of electrospinning process variables on the size of polymer fibers and bead-on-string<br>structures established with a 2 <sup>3</sup> factorial design. Beilstein Journal of Nanotechnology,<br>2018, 9, 2466-2478.             | 2.8  | 51        |
| 7  | Immobilization of <i>Bifidobacterium infantis</i> Cells in Selected Hydrogels as a Method of<br>Increasing Their Survival in Fermented Milkless Beverages. Journal of Food Quality, 2018, 2018, 1-11.                                  | 2.6  | 8         |
| 8  | Computer-aided image analysis for microcapsules' quality assessment. Biocybernetics and Biomedical<br>Engineering, 2015, 35, 342-350.                                                                                                  | 5.9  | 3         |
| 9  | Chemical method for retrieval of cells encapsulated in alginate-polyethersulfone microcapsules.<br>Artificial Cells, Nanomedicine and Biotechnology, 2014, 42, 151-160.                                                                | 2.8  | 1         |
| 10 | Comparison of different technologies for alginate beads production. Chemical Papers, 2008, 62, .                                                                                                                                       | 2.2  | 113       |
| 11 | Application of mass transfer coefficient approach for ranking of active carbons designed for hemoperfusion. Carbon, 2004, 42, 2139-2146.                                                                                               | 10.3 | 14        |
| 12 | Influence of Process Conditions During Impulsed Electrostatic Droplet Formation on Size<br>Distribution of Hydrogel Beads. Artificial Cells, Blood Substitutes, and Biotechnology, 2004, 32, 41-53.                                    | 0.9  | 35        |
| 13 | Influence of electric parameters on the alginate-polyethersulfone microcapsule structure. , 0, 64, 400-408.                                                                                                                            |      | 3         |
| 14 | A method for investigating transport properties of partly biodegradable spherical membranes using vitamin B12 as the marker. , 0, 128, 170-178.                                                                                        |      | 4         |