
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7170007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Superior Microâ€5upercapacitors Based on Graphene Quantum Dots. Advanced Functional Materials, 2013, 23, 4111-4122.	7.8	595
2	Fabrication of Free-Standing, Electrochemically Active, and Biocompatible Graphene Oxideâ^Polyaniline and Grapheneâ^Polyaniline Hybrid Papers. ACS Applied Materials & Interfaces, 2010, 2, 2521-2529.	4.0	472
3	Promising activated carbons derived from waste tea-leaves and their application in high performance supercapacitors electrodes. Electrochimica Acta, 2013, 87, 401-408.	2.6	453
4	Promising Porous Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO ₂ Capture Performance. ACS Applied Materials & Interfaces, 2012, 4, 5800-5806.	4.0	407
5	Fast and Large Lithium Storage in 3D Porous VN Nanowires–Graphene Composite as a Superior Anode Toward Highâ€Performance Hybrid Supercapacitors. Advanced Functional Materials, 2015, 25, 2270-2278.	7.8	379
6	2-Methylimidazole-Derived Ni–Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 15510-15524.	4.0	374
7	Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. Journal of Materials Chemistry, 2012, 22, 17245.	6.7	350
8	A hybrid supercapacitor based on flower-like Co(OH) ₂ and urchin-like VN electrode materials. Journal of Materials Chemistry A, 2014, 2, 12724-12732.	5.2	324
9	Safe and high-rate supercapacitors based on an "acetonitrile/water in salt―hybrid electrolyte. Energy and Environmental Science, 2018, 11, 3212-3219.	15.6	297
10	Fabrication of carbon nanofiber–polyaniline composite flexible paper for supercapacitor. Nanoscale, 2011, 3, 212-216.	2.8	275
11	Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers. Nanoscale, 2013, 5, 6053.	2.8	271
12	A low-cost "water-in-salt―electrolyte for a 2.3 V high-rate carbon-based supercapacitor. Journal of Materials Chemistry A, 2019, 7, 7541-7547.	5.2	260
13	Disordered, Large Interlayer Spacing, and Oxygenâ€Rich Carbon Nanosheets for Potassium Ion Hybrid Capacitor. Advanced Energy Materials, 2019, 9, 1803894.	10.2	238
14	Spontaneous Growth of 3D Framework Carbon from Sodium Citrate for High Energy―and Powerâ€Density and Longâ€Life Sodiumâ€Ion Hybrid Capacitors. Advanced Energy Materials, 2018, 8, 1702409.	10.2	221
15	Recent advances in understanding Li–CO ₂ electrochemistry. Energy and Environmental Science, 2019, 12, 887-922.	15.6	215
16	Opening Magnesium Storage Capability of Two-Dimensional MXene by Intercalation of Cationic Surfactant. ACS Nano, 2018, 12, 3733-3740.	7.3	208
17	3D Hierarchical Co/CoOâ€Graphene arbonized Melamine Foam as a Superior Cathode toward Longâ€Life Lithium Oxygen Batteries. Advanced Functional Materials, 2016, 26, 1354-1364.	7.8	206
18	A Highâ€Performance Sodiumâ€ion Hybrid Capacitor Constructed by Metal–Organic Framework–Derived Anode and Cathode Materials. Advanced Functional Materials, 2018, 28, 1800757.	7.8	205

#	Article	IF	CITATIONS
19	Facile Synthesis of Fe ₂ O ₃ Nano-Dots@Nitrogen-Doped Graphene for Supercapacitor Electrode with Ultralong Cycle Life in KOH Electrolyte. ACS Applied Materials & Interfaces, 2016, 8, 9335-9344.	4.0	200
20	Inâ€Plane Microâ€6upercapacitors for an Integrated Device on One Piece of Paper. Advanced Functional Materials, 2017, 27, 1702394.	7.8	195
21	3D nitrogen-doped framework carbon for high-performance potassium ion hybrid capacitor. Energy Storage Materials, 2019, 23, 522-529.	9.5	190
22	NO2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interfacial polymerization. Sensors and Actuators B: Chemical, 2007, 123, 107-113.	4.0	188
23	Tribological Behavior of UHMWPE Reinforced with Graphene Oxide Nanosheets. Tribology Letters, 2012, 46, 55-63.	1.2	188
24	High performance supercapacitor electrode based on graphene paper via flame-induced reduction of graphene oxide paper. Journal of Power Sources, 2013, 222, 52-58.	4.0	183
25	Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites. European Polymer Journal, 2012, 48, 1026-1033.	2.6	176
26	A super-high energy density asymmetric supercapacitor based on 3D core–shell structured NiCo-layered double hydroxide@carbon nanotube and activated polyaniline-derived carbon electrodes with commercial level mass loading. Journal of Materials Chemistry A, 2015, 3, 13244-13253.	5.2	166
27	Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014, 69, 437-443.	5.4	159
28	Superior asymmetric supercapacitor based on Ni-Co oxide nanosheets and carbon nanorods. Scientific Reports, 2014, 4, 3712.	1.6	157
29	Enhancement of capacitance performance of flexible carbon nanofiber paper by adding graphene nanosheets. Journal of Power Sources, 2012, 199, 373-378.	4.0	152
30	Carbon nanofiber bridged two-dimensional titanium carbide as a superior anode for lithium-ion batteries. Journal of Materials Chemistry A, 2015, 3, 14096-14100.	5.2	152
31	Preparation and characterization of electrochemically deposited carbon nitride films on silicon substrate. Journal Physics D: Applied Physics, 2004, 37, 907-913.	1.3	151
32	Influence of nitric acid modification of ordered mesoporous carbon materials on their capacitive performances in different aqueous electrolytes. Journal of Power Sources, 2012, 204, 220-229.	4.0	142
33	Transparent and flexible glucose biosensor via layer-by-layer assembly of multi-wall carbon nanotubes and glucose oxidase. Electrochemistry Communications, 2007, 9, 1269-1275.	2.3	141
34	Porous g ₃ N ₄ and MXene Dual onfined FeOOH Quantum Dots for Superior Energy Storage in an Ionic Liquid. Advanced Science, 2020, 7, 1901975.	5.6	139
35	A high-temperature flexible supercapacitor based on pseudocapacitive behavior of FeOOH in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8316-8327.	5.2	138
36	Three-dimensional Ni(OH)2 nanoflakes/graphene/nickel foam electrode with high rate capability for supercapacitor applications. International Journal of Hydrogen Energy, 2014, 39, 7876-7884.	3.8	136

#	Article	IF	CITATIONS
37	Bifunctional tertiary amine-squaramide catalyzed asymmetric catalytic 1,6-conjugate addition/aromatization of para-quinone methides with oxindoles. Chemical Communications, 2016, 52, 4183-4186.	2.2	135
38	Influence of different buffer gases on synthesis of few-layered graphene by arc discharge method. Applied Surface Science, 2012, 258, 4523-4531.	3.1	127
39	Facile preparation and electrochemical characterization of cobalt oxide/multi-walled carbon nanotube composites for supercapacitors. Journal of Power Sources, 2011, 196, 7841-7846.	4.0	126
40	Fabrication and characterization of poly(vinyl alcohol)/graphene oxide nanofibrous biocomposite scaffolds. Journal of Applied Polymer Science, 2013, 127, 1885-1894.	1.3	124
41	Enhancement in the fluorescence of graphene quantum dots by hydrazine hydrate reduction. Carbon, 2014, 66, 334-339.	5.4	124
42	Study of structure, tribological properties and growth mechanism of DLC and nitrogen-doped DLC films deposited by electrochemical technique. Applied Surface Science, 2004, 236, 328-335.	3.1	120
43	Advances in Manganeseâ€Based Oxides Cathodic Electrocatalysts for Li–Air Batteries. Advanced Functional Materials, 2018, 28, 1704973.	7.8	120
44	Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 2017, 5, 292-302.	5.2	118
45	A Dual Carbonâ€Based Potassium Dual Ion Battery with Robust Comprehensive Performance. Small, 2018, 14, e1801836.	5.2	118
46	Candle soot: onion-like carbon, an advanced anode material for a potassium-ion hybrid capacitor. Journal of Materials Chemistry A, 2019, 7, 9247-9252.	5.2	112
47	The Applications of Waterâ€inâ€Salt Electrolytes in Electrochemical Energy Storage Devices. Advanced Functional Materials, 2021, 31, 2006749.	7.8	111
48	Free-Standing Three-Dimensional Graphene/Manganese Oxide Hybrids As Binder-Free Electrode Materials for Energy Storage Applications. ACS Applied Materials & Interfaces, 2014, 6, 11665-11674.	4.0	110
49	Ultra-small, size-controlled Ni(OH)2 nanoparticles: elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Materials, 2015, 7, e183-e183.	3.8	109
50	Fabrication of Carbon Nanotubeâ^'Polyaniline Composites via Electrostatic Adsorption in Aqueous Colloids. Journal of Physical Chemistry C, 2007, 111, 4125-4131.	1.5	107
51	Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Science Bulletin, 2012, 57, 3051-3058.	1.7	107
52	Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor. Scientific Reports, 2015, 5, 11095.	1.6	106
53	Identifying pseudocapacitance of Fe ₂ O ₃ in an ionic liquid and its application in asymmetric supercapacitors. Journal of Materials Chemistry A, 2014, 2, 14550-14556.	5.2	105
54	Silica-grafted ionic liquids for revealing the respective charging behaviors of cations and anions in supercapacitors. Nature Communications, 2017, 8, 2188.	5.8	103

#	Article	IF	CITATIONS
55	Optimization of Organic/Water Hybrid Electrolytes for Highâ€Rate Carbonâ€Based Supercapacitor. Advanced Functional Materials, 2019, 29, 1904136.	7.8	102
56	A sodium perchlorate-based hybrid electrolyte with high salt-to-water molar ratio for safe 2.5â€V carbon-based supercapacitor. Energy Storage Materials, 2019, 23, 603-609.	9.5	102
57	Engineering the Electrochemical Capacitive Properties of Microsupercapacitors Based on Graphene Quantum Dots/MnO ₂ Using Ionic Liquid Gel Electrolytes. ACS Applied Materials & Interfaces, 2015, 7, 25378-25389.	4.0	99
58	Field emission from ordered carbon nanotube-ZnO heterojunction arrays. Carbon, 2008, 46, 753-758.	5.4	97
59	Study on the electrochemical properties of cubic ordered mesoporous carbon for supercapacitors. Journal of Power Sources, 2011, 196, 10472-10478.	4.0	97
60	Facile Preparation of One-Dimensional Wrapping Structure: Graphene Nanoscroll-Wrapped of Fe ₃ O ₄ Nanoparticles and Its Application for Lithium-Ion Battery. ACS Applied Materials & Interfaces, 2014, 6, 9890-9896.	4.0	96
61	CeO <i>_x</i> -Decorated Hierarchical NiCo ₂ S ₄ Hollow Nanotubes Arrays for Enhanced Oxygen Evolution Reaction Electrocatalysis. ACS Applied Materials & Interfaces, 2019, 11, 39841-39847.	4.0	95
62	Catalytic performances of NiO–CeO2 for the reforming of methane with CO2 and O2. Fuel, 2006, 85, 2243-2247.	3.4	94
63	Enhanced electrochemical properties of graphene-wrapped ZnMn ₂ O ₄ nanorods for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 149-154.	5.2	94
64	Watchbandâ€Like Supercapacitors with Body Temperature Inducible Shape Memory Ability. Advanced Energy Materials, 2016, 6, 1600763.	10.2	94
65	Effects of concentration and temperature of EMIMBF4/acetonitrile electrolyte on the supercapacitive behavior of graphene nanosheets. Journal of Materials Chemistry, 2012, 22, 8853.	6.7	92
66	Synthesis of a graphene oxide–polyacrylic acid nanocomposite hydrogel and its swelling and electroresponsive properties. RSC Advances, 2013, 3, 12751.	1.7	92
67	Dispersing and Functionalizing Multiwalled Carbon Nanotubes in TiO2Sol. Journal of Physical Chemistry B, 2006, 110, 25844-25849.	1.2	91
68	Activated carbon produced from paulownia sawdust for high-performance CO2 sorbents. Chinese Chemical Letters, 2014, 25, 929-932.	4.8	89
69	The Charge Storage Mechanisms of 2D Cationâ€Intercalated Manganese Oxide in Different Electrolytes. Advanced Energy Materials, 2019, 9, 1802707.	10.2	89
70	Porous niobium nitride as a capacitive anode material for advanced Li-ion hybrid capacitors with superior cycling stability. Journal of Materials Chemistry A, 2016, 4, 9760-9766.	5.2	84
71	Recent Advances in Dualâ€Functional Devices Integrating Solar Cells and Supercapacitors. Solar Rrl, 2017, 1, 1700002.	3.1	83
72	Morphology Engineering of Co ₃ O ₄ Nanoarrays as Free-Standing Catalysts for Lithium–Oxygen Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23713-23720.	4.0	82

#	Article	IF	CITATIONS
73	3D high-density MXene@MnO ₂ microflowers for advanced aqueous zinc-ion batteries. Journal of Materials Chemistry A, 2020, 8, 24635-24644.	5.2	82
74	Salty Ice Electrolyte with Superior Ionic Conductivity Towards Lowâ€Temperature Aqueous Zinc Ion Hybrid Capacitors. Advanced Functional Materials, 2021, 31, 2101277.	7.8	81
75	Three-Dimensional Graphene/Polyaniline Composite Hydrogel as Supercapacitor Electrode. Journal of the Electrochemical Society, 2012, 159, A1702-A1709.	1.3	80
76	A rechargeable aqueous zinc/sodium manganese oxides battery with robust performance enabled by Na2SO4 electrolyte additive. Energy Storage Materials, 2021, 38, 299-308.	9.5	79
77	An Asymmetric Supercapacitor with Both Ultra-High Gravimetric and Volumetric Energy Density Based on 3D Ni(OH) ₂ /MnO ₂ @Carbon Nanotube and Activated Polyaniline-Derived Carbon. ACS Applied Materials & Interfaces, 2017, 9, 668-676.	4.0	78
78	Recent advances in dual-carbon based electrochemical energy storage devices. Nano Energy, 2020, 72, 104728.	8.2	78
79	Synthesis of fluorine-doped multi-layered graphene sheets by arc-discharge. RSC Advances, 2012, 2, 6761.	1.7	77
80	Characterization of hydrogenated diamond-like carbon films electrochemically deposited on a silicon substrate. Journal Physics D: Applied Physics, 2004, 37, 2416-2424.	1.3	76
81	Recent Advances of Celluloseâ€Based Materials and Their Promising Application in Sodiumâ€Ion Batteries and Capacitors. Small, 2018, 14, e1802444.	5.2	75
82	Engineering the Electrochemical Capacitive Properties of Graphene Sheets in Ionicâ€Liquid Electrolytes by Correct Selection of Anions. ChemSusChem, 2014, 7, 3053-3062.	3.6	74
83	Coupling effect between ultra-small Mn 3 O 4 nanoparticles and porous carbon microrods for hybrid supercapacitors. Energy Storage Materials, 2017, 6, 53-60.	9.5	72
84	Ion regulation of ionic liquid electrolytes for supercapacitors. Energy and Environmental Science, 2021, 14, 2859-2882.	15.6	71
85	Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond. Carbon, 2021, 185, 126-151.	5.4	71
86	Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm, 2012, 14, 5879.	1.3	70
87	Highly enhanced energy density of supercapacitors at extremely low temperatures. Journal of Power Sources, 2019, 423, 271-279.	4.0	70
88	Facile synthesis of Co and Ce dual-doped Ni3S2 nanosheets on Ni foam for enhanced oxygen evolution reaction. Nano Research, 2020, 13, 2130-2135.	5.8	70
89	Hierarchically porous and nitrogen, sulfur-codoped graphene-like microspheres as a high capacity anode for lithium ion batteries. Chemical Communications, 2015, 51, 2134-2137.	2.2	69
90	Towards the understanding of acetonitrile suppressing salt precipitation mechanism in a water-in-salt electrolyte for low-temperature supercapacitors. Journal of Materials Chemistry A, 2020, 8, 17998-18006.	5.2	69

#	Article	IF	CITATIONS
91	Mesoporous Ni-doped MnCo ₂ O ₄ hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism. Journal of Materials Chemistry A, 2016, 4, 18392-18400.	5.2	68
92	Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods. Journal of Power Sources, 2015, 279, 358-364.	4.0	66
93	Hybrid Aqueous/Nonaqueous Waterâ€inâ€Bisalt Electrolyte Enables Safe Dual Ion Batteries. Small, 2020, 16, e1905838.	5.2	66
94	Bean pod-like Si@dopamine-derived amorphous carbon@N-doped graphene nanosheet scrolls for high performance lithium storage. Journal of Materials Chemistry A, 2016, 4, 10948-10955.	5.2	66
95	Study on field emission and photoluminescence properties of ZnO/graphene hybrids grown on Si substrates. Materials Chemistry and Physics, 2012, 133, 405-409.	2.0	65
96	Polyelectrolyte functionalization of graphene nanosheets as support for platinum nanoparticles and their applications to methanol oxidation. Electrochimica Acta, 2012, 59, 429-434.	2.6	64
97	TiO ₂ embedded in carbon submicron-tablets: synthesis from a metal–organic framework precursor and application as a superior anode in lithium-ion batteries. Chemical Communications, 2015, 51, 11370-11373.	2.2	64
98	The roles of graphene in advanced Li-ion hybrid supercapacitors. Journal of Energy Chemistry, 2018, 27, 43-56.	7.1	64
99	Electrochemical behavior of graphene nanosheets in alkylimidazolium tetrafluoroborate ionic liquid electrolytes: influences of organic solvents and the alkyl chains. Journal of Materials Chemistry, 2011, 21, 13205.	6.7	63
100	Enhancement of Field Emission and Photoluminescence Properties of Graphene-SnO ₂ Composite Nanostructures. ACS Applied Materials & Interfaces, 2011, 3, 4299-4305.	4.0	63
101	All-climate aqueous supercapacitor enabled by a deep eutectic solvent electrolyte based on salt hydrate. Journal of Energy Chemistry, 2020, 49, 198-204.	7.1	63
102	All-solid-state flexible microsupercapacitor based on two-dimensional titanium carbide. Chinese Chemical Letters, 2016, 27, 1586-1591.	4.8	62
103	Highâ€Performance and Ultraâ€Stable Aqueous Supercapacitors Based on a Green and Lowâ€Cost Waterâ€Inâ€Salt Electrolyte. ChemElectroChem, 2019, 6, 5433-5438.	1.7	60
104	Carbon encapsulated RuO ₂ nano-dots anchoring on graphene as an electrode for asymmetric supercapacitors with ultralong cycle life in an ionic liquid electrolyte. Journal of Materials Chemistry A, 2016, 4, 8180-8189.	5.2	59
105	Realizing the Embedded Growth of Large Li ₂ O ₂ Aggregations by Matching Different Metal Oxides for Highâ€Capacity and Highâ€Rate Lithium Oxygen Batteries. Advanced Science, 2017, 4, 1700172.	5.6	59
106	Sprinkling MnFe ₂ O ₄ quantum dots on nitrogen-doped graphene sheets: the formation mechanism and application for high-performance supercapacitor electrodes. Journal of Materials Chemistry A, 2018, 6, 9997-10007.	5.2	59
107	The Origin of Electrochemical Actuation of MnO ₂ /Ni Bilayer Film Derived by Redox Pseudocapacitive Process. Advanced Functional Materials, 2019, 29, 1806778.	7.8	59
108	NH3 and HCl sensing characteristics of polyaniline nanofibers deposited on commercial ceramic substrates using interfacial polymerization. Synthetic Metals, 2010, 160, 2452-2458.	2.1	57

#	Article	IF	CITATIONS
109	Surface amorphization and deoxygenation of graphene oxide paper by Ti ion implantation. Carbon, 2011, 49, 3141-3147.	5.4	57
110	Controllable synthesis of Mn ₃ O ₄ nanodots@nitrogen-doped graphene and its application for high energy density supercapacitors. Journal of Materials Chemistry A, 2017, 5, 5523-5531.	5.2	57
111	A moisture absorbing gel electrolyte enables aqueous and flexible supercapacitors operating at high temperatures. Journal of Materials Chemistry A, 2019, 7, 20398-20404.	5.2	57
112	An aqueous zinc-ion hybrid super-capacitor for achieving ultrahigh-volumetric energy density. Chinese Chemical Letters, 2021, 32, 926-931.	4.8	57
113	Ordered Mesoporous Silicoboron Carbonitride Materials via Preceramic Polymer Nanocasting. Chemistry of Materials, 2008, 20, 6325-6334.	3.2	56
114	"Water in salt/ionic liquid―electrolyte for 2.8ÂV aqueous lithium-ion capacitor. Science Bulletin, 2020, 65, 1812-1822.	4.3	56
115	The controlled growth of porous δ-MnO2nanosheets on carbon fibers as a bi-functional catalyst for rechargeable lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 10811-10818.	5.2	55
116	The hysteresis phenomenon of the field emission from the graphene film. Applied Physics Letters, 2011, 99, 173104.	1.5	54
117	Three-dimensional carbon framework as a promising anode material for high performance sodium ion storage devices. Chemical Engineering Journal, 2018, 353, 453-459.	6.6	54
118	Revealing the Impact of Oxygen Dissolved in Electrolytes on Aqueous Zinc-Ion Batteries. IScience, 2020, 23, 100995.	1.9	53
119	Three-dimensional hierarchical self-supported NiCo ₂ O ₄ /carbon nanotube core–shell networks as high performance supercapacitor electrodes. RSC Advances, 2015, 5, 7976-7985.	1.7	52
120	Size Effects in Sodium Ion Batteries. Advanced Functional Materials, 2021, 31, 2106047.	7.8	51
121	One dimensional graphene nanoscroll-wrapped MnO nanoparticles for high-performance lithium ion hybrid capacitors. Journal of Materials Chemistry A, 2021, 9, 6352-6360.	5.2	50
122	Potassiumâ€lon Batteries: Disordered, Large Interlayer Spacing, and Oxygenâ€Rich Carbon Nanosheets for Potassium Ion Hybrid Capacitor (Adv. Energy Mater. 19/2019). Advanced Energy Materials, 2019, 9, 1970069.	10.2	49
123	Fabrication of TiN nanorods by electrospinning and their electrochemical properties. Journal of Solid State Chemistry, 2011, 184, 1333-1338.	1.4	47
124	Facile preparation of large-scale graphene nanoscrolls from graphene oxide sheets by cold quenching in liquid nitrogen. Carbon, 2014, 79, 470-477.	5.4	47
125	Synthesis of MXene-supported layered MoS2 with enhanced electrochemical performance for Mg batteries. Chinese Chemical Letters, 2018, 29, 1313-1316.	4.8	45
126	Fabrication of Three-Dimensional ZnOâ^'Carbon Nanotube (CNT) Hybrids Using Self-Assembled CNT Micropatterns as Framework. Journal of Physical Chemistry C, 2007, 111, 17254-17259.	1.5	44

#	Article	IF	CITATIONS
127	Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries. Journal of Energy Chemistry, 2020, 46, 256-263.	7.1	44
128	Facile synthesis of Ag/GNS-g-PAA nanohybrids for antimicrobial applications. Colloids and Surfaces B: Biointerfaces, 2012, 89, 147-151.	2.5	43
129	Preparation of porous BiVO4 fibers by electrospinning and their photocatalytic performance under visible light. RSC Advances, 2013, 3, 20606.	1.7	43
130	Synthesis of Porous δâ€MnO ₂ Submicron Tubes as Highly Efficient Electrocatalyst for Rechargeable Li–O ₂ Batteries. ChemSusChem, 2015, 8, 1972-1979.	3.6	42
131	Synthesis and magnetic properties of CoFe2O4 nanoparticles confined within mesoporous silica. Microporous and Mesoporous Materials, 2010, 135, 137-142.	2.2	41
132	Insight into the formation mechanism of graphene quantum dots and the size effect on their electrochemical behaviors. Physical Chemistry Chemical Physics, 2015, 17, 14028-14035.	1.3	41
133	Construction of Supercapacitorâ€Based Ionic Diodes with Adjustable Bias Directions by Using Poly(ionic) Tj ETQo	1 1 0.78 11.1	4314 rgBT /
134	A metal–organic framework-derived pseudocapacitive titanium oxide/carbon core/shell heterostructure for high performance potassium ion hybrid capacitors. Journal of Materials Chemistry A, 2020, 8, 16302-16311.	5.2	40
135	Effect of deposition voltage on the microstructure of electrochemically deposited hydrogenated amorphous carbon films. Carbon, 2004, 42, 3103-3108.	5.4	39
136	Magnetic Field Regulating the Graphite Electrode for Excellent Lithium-Ion Batteries Performance. ACS Sustainable Chemistry and Engineering, 2019, 7, 6152-6160.	3.2	39
137	Synthesis of silicon carbide nitride nanocomposite films by a simple electrochemical method. Electrochemistry Communications, 2006, 8, 737-740.	2.3	38
138	Shape-alterable and -recoverable graphene/polyurethane bi-layered composite film for supercapacitor electrode. Journal of Power Sources, 2012, 213, 350-357.	4.0	38
139	Multilayer hybrid films consisting of alternating graphene and titanium dioxide for high-performance supercapacitors. Journal of Materials Chemistry C, 2013, 1, 1413.	2.7	38
140	High Rate and Long Cycle Life of a CNT/rGO/Si Nanoparticle Composite Anode for Lithiumâ€lon Batteries. Particle and Particle Systems Characterization, 2017, 34, 1700141.	1.2	38
141	Crossed carbon skeleton enhances the electrochemical performance of porous silicon nanowires for lithium ion battery anode. Electrochimica Acta, 2018, 280, 86-93.	2.6	38
142	The ethanol sensing property of magnetron sputtered ZnO thin films modified by Ag ion implantation. Sensors and Actuators B: Chemical, 2011, 160, 1499-1503.	4.0	37
143	Temperature dependence of the field emission from the few-layer graphene film. Applied Physics Letters, 2011, 99, 163103.	1.5	37
144	Supercapacitors based on graphene nanosheets using different non-aqueous electrolytes. New Journal of Chemistry, 2013, 37, 2186.	1.4	37

#	Article	IF	CITATIONS
145	PtNi Alloy Nanoparticles Supported on Polyelectrolyte Functionalized Graphene as Effective Electrocatalysts for Methanol Oxidation. Journal of the Electrochemical Society, 2013, 160, F262-F268.	1.3	37
146	Study of Ni-dopped MnCo2O4 Yolk-Shell Submicron-spheres with Fast Li+ Intercalation Pseudocapacitance As An Anode for High-Performance Lithium Ion Batteries. Electrochimica Acta, 2016, 203, 128-135.	2.6	37
147	A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2020, 36, 1904050-0.	2.2	37
148	Water-repellency and surface free energy of a-C:H films prepared by heat-treatment of polymer precursor. Diamond and Related Materials, 2005, 14, 1342-1347.	1.8	36
149	Electrospinning Synthesis of Mesoporous MnCoNiO _{<i>x</i>} @Double-Carbon Nanofibers for Sodium-Ion Battery Anodes with Pseudocapacitive Behavior and Long Cycle Life. ACS Applied Materials & Interfaces, 2016, 8, 34342-34352.	4.0	36
150	Solarâ€Thermal Driven Selfâ€Heating of Microâ€Supercapacitors at Low Temperatures. Solar Rrl, 2018, 2, 1800223.	3.1	36
151	Graphene nanosheets supported hollow Pt&CoSn(OH)6 nanospheres as a catalyst for methanol electro-oxidation. Journal of Power Sources, 2012, 205, 239-243.	4.0	35
152	Recent advances in anode materials for sodium - and potassium-ion hybrid capacitors. Current Opinion in Electrochemistry, 2019, 18, 1-8.	2.5	35
153	Preparation of ordered mesoporous silicon carbide monoliths via preceramic polymer nanocasting. Microporous and Mesoporous Materials, 2011, 142, 754-758.	2.2	34
154	Nanotube-like hard carbon as high-performance anode material for sodium ion hybrid capacitors. Science China Materials, 2018, 61, 285-295.	3.5	34
155	Aqueous rocking-chair aluminum-ion capacitors enabled by a self-adaptive electrochemical pore-structure remolding approach. Energy and Environmental Science, 2022, 15, 1131-1143.	15.6	34
156	Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor. New Carbon Materials, 2014, 29, 209-215.	2.9	33
157	Effect of surface area and heteroatom of porous carbon materials on electrochemical capacitance in aqueous and organic electrolytes. Science China Chemistry, 2014, 57, 1570-1578.	4.2	33
158	Effects of selenization conditions on microstructure evolution in solution processed Cu2ZnSn(S,Se)4 solar cells. Solar Energy Materials and Solar Cells, 2019, 195, 274-279.	3.0	33
159	Facile synthesis of ordered mesoporous γ-alumina monoliths via polymerization-based gel-casting. Microporous and Mesoporous Materials, 2011, 138, 40-44.	2.2	32
160	Fabrication of Cu-doped cerium oxide nanofibers via electrospinning for preferential CO oxidation. Catalysis Communications, 2011, 12, 514-518.	1.6	31
161	Synthesis and electrochemical properties of graphene supported PtNi nanodendrites. Electrochemistry Communications, 2012, 23, 72-75.	2.3	31
162	Synthesis of worm-like PtCo nanotubes for methanol oxidation. Electrochemistry Communications, 2013, 30, 71-74.	2.3	31

#	Article	IF	CITATIONS
163	Engineering of silicon-based ceramic fibers: Novel SiTaC(O) ceramic fibers prepared from polytantalosilane. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7086-7091.	2.6	30
164	Morphology and crystallinity-controlled synthesis of MnO ₂ hierarchical nanostructures and their application in lithium ion batteries. CrystEngComm, 2014, 16, 10476-10484.	1.3	30
165	Friction and wear properties of graphene oxide/ultrahighâ€molecularâ€weight polyethylene composites under the lubrication of deionized water and normal saline solution. Journal of Applied Polymer Science, 2014, 131, .	1.3	30
166	PtFe nanotubes/graphene hybrid: Facile synthesis and its electrochemical properties. International Journal of Hydrogen Energy, 2013, 38, 13011-13016.	3.8	29
167	Achieving a 2.7 V aqueous hybrid supercapacitor by the pH-regulation of electrolyte. Journal of Materials Chemistry A, 2020, 8, 8648-8660.	5.2	29
168	Recent advances in Mg-Li and Mg-Na hybrid batteries. Energy Storage Materials, 2022, 45, 142-181.	9.5	29
169	Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosensors and Bioelectronics, 2007, 22, 3256-3260.	5.3	28
170	Mutually Enhanced Capacitances in Carbon Nanofiber/Cobalt Hydroxide Composite Paper for Supercapacitor. Journal of the Electrochemical Society, 2012, 159, A485-A491.	1.3	28
171	Comparison between metal ion and polyelectrolyte functionalization for electrophoretic deposition of graphene nanosheet films. RSC Advances, 2012, 2, 9665.	1.7	28
172	Realizing high-performance lithium ion hybrid capacitor with a 3D MXene-carbon nanotube composite anode. Chemical Engineering Journal, 2022, 429, 132392.	6.6	28
173	Enhanced field emission properties from aligned graphenes fabricated on micro-hole patterned stainless steel. Applied Physics Letters, 2014, 105, .	1.5	27
174	Bioinspired Manganese Complexes and Graphene Oxide Synergistically Catalyzed Asymmetric Epoxidation of Olefins with Aqueous Hydrogen Peroxide. Advanced Synthesis and Catalysis, 2017, 359, 476-484.	2.1	27
175	Spinel-type solar-thermal conversion coatings on supercapacitors: An effective strategy for capacitance recovery at low temperatures. Energy Storage Materials, 2019, 23, 159-167.	9.5	27
176	Improving the performance of all-solid-state supercapacitors by modifying ionic liquid gel electrolytes with graphene nanosheets prepared by arc-discharge. Chinese Chemical Letters, 2014, 25, 859-864.	4.8	26
177	Fabrication of polymer-converted carbon films containing Ag, Pd nanoparticles. Nanotechnology, 2004, 15, 1759-1762.	1.3	25
178	An Ultrathin, Nanogradient, and Substrateâ€Independent WO x â€Based Film as a High Performance Flexible Solar Absorber. Solar Rrl, 2019, 3, 1900180.	3.1	25
179	Fabrication and Photocatalytic Properties of TiO ₂ /Reduced Graphene Oxide/Ag Nanocomposites with UV/Vis Response. European Journal of Inorganic Chemistry, 2015, 2015, 2222-2228.	1.0	24
180	Ions Transport in Electrochemical Energy Storage Devices at Low Temperatures. Advanced Functional Materials, 2022, 32, .	7.8	24

#	Article	IF	CITATIONS
181	Influences of the thickness of self-assembled graphene multilayer films on the supercapacitive performance. Electrochimica Acta, 2012, 60, 41-49.	2.6	23
182	Constructing surface-driven lithium ion storage structure for high performance hybrid capacitor. Electrochimica Acta, 2019, 299, 163-172.	2.6	23
183	Synthesis of ordered mesoporous silicon oxycarbide monoliths via preceramic polymer nanocasting. Microporous and Mesoporous Materials, 2012, 147, 252-258.	2.2	22
184	Large field emission current and density from robust carbon nanotube cathodes for continuous and pulsed electron sources. Science China Materials, 2017, 60, 335-342.	3.5	22
185	Synthesis of Co–Ni oxide microflowers as a superior anode for hybrid supercapacitors with ultralong cycle life. Chinese Chemical Letters, 2017, 28, 206-212.	4.8	22
186	Designing a Zn(BF ₄) ₂ â€Based Ionic Liquid Electrolyte to Realize Superior Energy Density in a Carbonâ€Based Zincâ€Ion Hybrid Capacitor. ChemElectroChem, 2021, 8, 1289-1297.	1.7	22
187	Coupling of graphene quantum dots with MnO2 nanosheets for boosting capacitive storage in ionic liquid electrolyte. Chemical Engineering Journal, 2022, 437, 135301.	6.6	22
188	Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor. Carbon, 2004, 42, 2769-2771.	5.4	21
189	Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to Reveal Accurate Charge Storage in Supercapacitors. Small Methods, 2019, 3, 1900246.	4.6	21
190	TiO ₂ Nanoparticles In Situ Formed on Ti ₃ C ₂ Nanosheets by a Oneâ€Step Ethanolâ€Thermal Method for Enhanced Reversible Lithiumâ€Ion Storage. ChemistrySelect, 2020, 5, 3124-3129.	0.7	21
191	Synergetic ternary metal oxide nanodots-graphene cathode for high performance zinc energy storage. Chinese Chemical Letters, 2020, 31, 2358-2364.	4.8	21
192	Enhanced field emission performance of MXene–TiO ₂ composite films. Nanoscale, 2021, 13, 7622-7629.	2.8	21
193	Field emission cathode based on three-dimensional framework carbon and its operation under the driving of a triboelectric nanogenerator. Nano Energy, 2018, 49, 308-315.	8.2	20
194	Synthesis of a graphene nanosheet film with attached amorphous carbon nanoparticles by their simultaneous electrodeposition. Carbon, 2010, 48, 2665-2668.	5.4	19
195	The improvement of the field emission properties from graphene films: Ti transition layer and annealing process. AIP Advances, 2012, 2, 022101.	0.6	19
196	Effect of carboxylic acid groups on the supercapacitive performance of functional carbon frameworks derived from bacterial cellulose. Chinese Chemical Letters, 2017, 28, 2212-2218.	4.8	19
197	Punching holes on paper-like electrodes: An effective strategy to enhance rate performance of supercapacitors. Energy Storage Materials, 2019, 19, 338-345.	9.5	19
198	High-performance nitrogen and sulfur co-doped nanotube-like carbon anodes for sodium ion hybrid capacitors. Chinese Chemical Letters, 2020, 31, 2219-2224.	4.8	19

#	Article	IF	CITATIONS
199	Engineering the field emission properties of graphene film by gas adsorbates. Physical Chemistry Chemical Physics, 2014, 16, 1850-1855.	1.3	18
200	Silica-grafted ionic liquid for maximizing the operational voltage of electrical double-layer capacitors. Energy Storage Materials, 2019, 18, 253-259.	9.5	18
201	Monitoring the mechanical properties of the solid electrolyte interphase (SEI) using electrochemical quartz crystal microbalance with dissipation. Chinese Chemical Letters, 2021, 32, 1139-1143.	4.8	18
202	Synthesis and photocatalytic property of gold nanoparticles by using a series of bolaform Schiff base amphiphiles. Materials Research Bulletin, 2012, 47, 4203-4209.	2.7	17
203	Green fabrication of porous chitosan/graphene oxide composite xerogels for drug delivery. Journal of Applied Polymer Science, 2014, 131, .	1.3	17
204	A combined DFT and experimental study on the nucleation mechanism of NiO nanodots on graphene. Journal of Materials Chemistry A, 2018, 6, 13717-13724.	5.2	17
205	Flexible lithium metal capacitors enabled by an in situ prepared gel polymer electrolyte. Chinese Chemical Letters, 2021, 32, 3496-3500.	4.8	16
206	Synthesis of diamond-like carbon/nanosilica composite films by an electrochemical method. Electrochemistry Communications, 2004, 6, 1159-1162.	2.3	15
207	Fabrication of Zn2TiO4 and TiN nanofibers by pyrolysis of electrospun precursor fibers. CrystEngComm, 2011, 13, 3905.	1.3	15
208	One-step synthesis of pure Cu nanowire/carbon nanotube coaxial nanocables with different structures by arc discharge. Journal of Physics and Chemistry of Solids, 2011, 72, 1519-1523.	1.9	15
209	Regulating the electrolyte ion types and exposed crystal facets for pseudocapacitive energy storage of transition metal nitrides. Energy Storage Materials, 2022, 46, 278-288.	9.5	15
210	Synthesis and Electrochemical Biosensing Properties of Hierarchically Porous Nitrogenâ€Đoped Graphene Microspheres. ChemElectroChem, 2015, 2, 348-353.	1.7	14
211	Ti ₃ C ₂ (MXene) based field electron emitters. Nanotechnology, 2020, 31, 285701.	1.3	14
212	Preparation of Threeâ€Ðimensional Copperâ€Zinc Alloy Current Collector by Powder Metallurgy for Lithium Metal Battery Anode. ChemElectroChem, 2021, 8, 2479-2487.	1.7	14
213	Superior Volumetric Capability Dualâ€lon Batteries Enabled by A Microsize Niobium Tungsten Oxide Anode. Advanced Functional Materials, 2022, 32, .	7.8	14
214	Microstructures, surface states and field emission mechanism of graphene–tin/tin oxide hybrids. Journal of Colloid and Interface Science, 2013, 395, 40-44.	5.0	13
215	Magnetic field-induced capacitance change in aqueous carbon-based supercapacitors. Cell Reports Physical Science, 2021, 2, 100455.	2.8	13
216	An ultrahigh-energy-density lithium metal capacitor. Energy Storage Materials, 2021, 42, 154-163.	9.5	13

#	Article	IF	CITATIONS
217	Novel synthesis of <i>in situ</i> CeO _{<i>x</i>} nanoparticles decorated on CoP nanosheets for highly efficient electrocatalytic oxygen evolution. Inorganic Chemistry Frontiers, 2021, 8, 4440-4447.	3.0	12
218	"Cation/anion with co-solvation―type high-voltage aqueous electrolyte enabled by strong hydrogen bonding. Nano Energy, 2022, 99, 107377.	8.2	12
219	Hierarchically Porous and Nitrogenâ€Doped Graphene‣ike Microspheres as Stable Anodes for Lithiumâ€Ion Batteries. ChemElectroChem, 2015, 2, 1830-1838.	1.7	11
220	Microstructure and mechanical properties of hard carbon films prepared by heat treatment of a polymer on steel substrate. Surface and Coatings Technology, 2005, 190, 206-211.	2.2	10
221	Constructing consistent pore microstructures of bacterial cellulose-derived cathode and anode materials for high energy density sodium-ion capacitors. New Journal of Chemistry, 2020, 44, 1865-1871.	1.4	10
222	Supercapacitors: Superior Micro-Supercapacitors Based on Graphene Quantum Dots (Adv. Funct.) Tj ETQq0 0 0 r	gBT /Overl 7.8	oçk 10 Tf 50
223	Dual‣trategy to Construct Aqueousâ€Based Symmetric Supercapacitors with High Volumetric Energy Density. ChemElectroChem, 2020, 7, 838-845.	1.7	9
224	Boosting the performance of lithium metal capacitors with a Li composite anode. Journal of Materials Chemistry A, 2021, 9, 10722-10730.	5.2	9
225	Low-Temperature Synthesis of Amorphous FePO ₄ @rGO Composites for Cost-Effective Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 57442-57450.	4.0	9
226	Field electron emission from pencil-drawn cold cathodes. Applied Physics Letters, 2016, 108, .	1.5	8
227	High voltage supercapacitor based on nonflammable high-concentration-ionic liquid electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 598, 124858.	2.3	8
228	A novel method for the preparation of amorphous hydrogenated carbon films containing Au nanoparticles. Carbon, 2004, 42, 232-235.	5.4	7
229	Design and mechanism of cost-effective and highly efficient ultrathin (< 0.5 μm) GaAs solar cells employing nano/micro-hemisphere surface texturing. AIP Advances, 2013, 3, .	0.6	7
230	Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites. Journal of Nanomaterials, 2014, 2014, 1-2.	1.5	7
231	One produced three: A capacitor-battery integration strategy in a dual-carbon device. Energy Storage Materials, 2021, 34, 356-364.	9.5	7
232	Aligned Ti ₃ C ₂ T <i>_x</i> Electrodes Induced by Magnetic Field for High-Performance Lithium-Ion Storage. ACS Applied Energy Materials, 2021, 4, 5590-5598.	2.5	7
233	Nanostructures and Substituent Alkyl Chains Effect on Assembly of Organogels Based on Some Glutamic Acid Diethyl Ester Imide Derivatives. Current Nanoscience, 2013, 9, 536-542.	0.7	7
234	Synthesis of carbon nanospheres from carbon-based network polymers. Journal of Materials Science, 2010, 45, 2619-2624.	1.7	6

#	Article	IF	CITATIONS
235	Preparation and Photocatalytic Property of Gold Nanoparticles by Using Two Bolaform Cholesteryl Imide Derivatives. Journal of Dispersion Science and Technology, 2013, 34, 1675-1682.	1.3	6
236	Synthesis and field emission properties of carbon nanotube films modified with amorphous carbon nanoparticles by a simple electrodeposition method. Chinese Chemical Letters, 2014, 25, 375-379.	4.8	6
237	Superiority of Cubic Perovskites Oxides with Strong Bâ€O Hybridization for Oxygenâ€Anion Intercalation Pseudocapacitance. Advanced Functional Materials, 2022, 32, .	7.8	6
238	Field emission properties of polymer-converted carbon films by heat treatment. Solid State Communications, 2005, 133, 113-116.	0.9	5
239	Optimization of Electrode Potential Ranges for Constructing 4.0â€V Carbonâ€Based Supercapacitors. ChemElectroChem, 2020, 7, 624-630.	1.7	5
240	Understanding Oxygen Bubbleâ€Triggered Exfoliation of Graphite Toward the Lowâ€Defect Graphene. Advanced Materials Interfaces, 2021, 8, 2001899.	1.9	5
241	Effect of sulfurization process on the properties of solution-processed Cu2SnS3 thin film solar cells. Journal of Materials Science: Materials in Electronics, 2019, 30, 17947-17955.	1.1	5
242	Facile Approach to Preparation of Nitrogen-doped Graphene and Its Superca-pacitive Performance. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 677-682.	0.6	5
243	Preparation and characterization of amorphous hydrogenated carbon films containing Au nanoparticles from heat-treatment of polymer precursors. Applied Physics A: Materials Science and Processing, 2005, 81, 197-203.	1.1	4
244	The Fabrication of Carbon Nanofibers Paper Supported Co ₃ O ₄ Nanocomposite and Their Electrochemical Properties. Journal of Nanoscience and Nanotechnology, 2015, 15, 3981-3986.	0.9	4
245	Deposition of bio-mimicking graphene sheets with lotus leaf-like and cell-like structures on the nickel substrate. Science Bulletin, 2012, 57, 3036-3039.	1.7	3
246	Polymer-assisted synthesis of aligned amorphous silicon nanowires and their core/shell structures with Au nanoparticles. Chemical Physics Letters, 2004, 397, 128-132.	1.2	2
247	Fabrication of oriented FePt nanoparticles embedded in a carbon film made by pyrolysis of poly(phenylcarbyne). Carbon, 2004, 42, 3021-3024.	5.4	2
248	Preparation and Characterization of Poly(Vinyl Alcohol)(PVA)/Hydroxyapatite (HA) Nanofibrous Scaffolds. Advanced Materials Research, 2011, 284-286, 459-463.	0.3	2
249	Supercapacitors: Vacuum Filtrationâ€andâ€Transfer Technique Helps Electrochemical Quartz Crystal Microbalance to Reveal Accurate Charge Storage in Supercapacitors (Small Methods 11/2019). Small Methods, 2019, 3, 1970037.	4.6	2
250	Recovering the electrochemical window by forming a localized solvation nanostructure in ionic liquids with trace water. Science China Chemistry, 2022, 65, 96-105.	4.2	2
251	Chemical Functionalization, Self-Assembly, and Applications of Nanomaterials and Nanocomposites 2014. Journal of Nanomaterials, 2015, 2015, 1-1.	1.5	1
252	ZnO Nanorod Arrays Applied as Broad-Spectrum Sensors for Detecting Various Volatile Organic Solvents. Nanoscience and Nanotechnology Letters, 2012, 4, 1181-1187.	0.4	0