List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7169993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of semiconductor quantum dots in bioimaging and biosensing. Journal of Materials Chemistry B, 2017, 5, 6701-6727.	2.9	265
2	Effect of ZnS shell thickness on the phonon spectra in CdSe quantum dots. Physical Review B, 2003, 68, .	1.1	227
3	Energy Transfer in Aqueous Solutions of Oppositely Charged CdSe/ZnS Core/Shell Quantum Dots and in Quantum Dotâ^'Nanogold Assemblies. Nano Letters, 2004, 4, 451-457.	4.5	225
4	Colloidal quantum dots for optoelectronics. Journal of Materials Chemistry A, 2017, 5, 13252-13275.	5.2	167
5	Intrinsic Chirality of CdSe/ZnS Quantum Dots and Quantum Rods. Nano Letters, 2015, 15, 2844-2851.	4.5	153
6	Annealing-induced structural changes of carbon onions: High-resolution transmission electron microscopy and Raman studies. Carbon, 2014, 73, 78-86.	5.4	144
7	sp ² –sp ³ -Hybridized Atomic Domains Determine Optical Features of Carbon Dots. ACS Nano, 2019, 13, 10737-10744.	7.3	136
8	Anomalous Size-Dependent Decay of Low-Energy Luminescence from PbS Quantum Dots in Colloidal Solution. ACS Nano, 2012, 6, 8913-8921.	7.3	95
9	Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS ₂ Nanostructures. ACS Nano, 2018, 12, 954-964.	7.3	93
10	Carbon dots produced <i>via</i> space-confined vacuum heating: maintaining efficient luminescence in both dispersed and aggregated states. Nanoscale Horizons, 2019, 4, 388-395.	4.1	82
11	Functionalized nanocrystal-tagged fluorescent polymer beads: synthesis, physicochemical characterization, and immunolabeling application. Analytical Biochemistry, 2004, 334, 257-265.	1.1	77
12	Electroabsorption by 0D, 1D, and 2D Nanocrystals: A Comparative Study of CdSe Colloidal Quantum Dots, Nanorods, and Nanoplatelets. ACS Nano, 2014, 8, 7678-7686.	7.3	75
13	Chlorin e6–ZnSe/ZnS quantum dots based system as reagent for photodynamic therapy. Nanotechnology, 2015, 26, 055102.	1.3	72
14	Energy Level Modification with Carbon Dot Interlayers Enables Efficient Perovskite Solar Cells and Quantum Dot Based Lightâ€Emitting Diodes. Advanced Functional Materials, 2020, 30, 1910530.	7.8	72
15	Controlled Self-Assembly of Nanocrystals into Polycrystalline Fluorescent Dendrites with Energy-Transfer Properties. Angewandte Chemie - International Edition, 2006, 45, 2048-2052.	7.2	66
16	Amino Functionalization of Carbon Dots Leads to Red Emission Enhancement. Journal of Physical Chemistry Letters, 2019, 10, 5111-5116.	2.1	66
17	Two-photon transitions in systems with semiconductor quantum dots. Physical Review B, 1996, 54, 8627-8632.	1.1	65
18	Analysis of strain and intermixing in single-layerGeâ^•Siquantum dots using polarized Raman spectroscopy. Physical Review B, 2006, 73, .	1.1	64

#	Article	IF	CITATIONS
19	Dislocation-Induced Chirality of Semiconductor Nanocrystals. Nano Letters, 2015, 15, 1710-1715.	4.5	64
20	Exciton-phonon coupling in semiconductor quantum dots: Resonant Raman scattering. Physical Review B, 1997, 56, 7491-7502.	1.1	57
21	DNA-assisted formation of quasi-nanowires from fluorescent CdSe/ZnS nanocrystals. Nanotechnology, 2006, 17, 581-587.	1.3	57
22	Completely Chiral Optical Force for Enantioseparation. Scientific Reports, 2016, 6, 36884.	1.6	57
23	Enantioselective cellular uptake of chiral semiconductor nanocrystals. Nanotechnology, 2016, 27, 075102.	1.3	54
24	Giant Optical Activity of Quantum Dots, Rods and Disks with Screw Dislocations. Scientific Reports, 2015, 5, 14712.	1.6	49
25	Quantum-dot supercrystals for future nanophotonics. Scientific Reports, 2013, 3, .	1.6	47
26	Influence of the solvent environment on luminescent centers within carbon dots. Nanoscale, 2020, 12, 602-609.	2.8	47
27	Molecular Recognition of Biomolecules by Chiral CdSe Quantum Dots. Scientific Reports, 2016, 6, 24177.	1.6	46
28	Magneto-Fluorescent Microbeads for Bacteria Detection Constructed from Superparamagnetic Fe ₃ O ₄ Nanoparticles and AIS/ZnS Quantum Dots. Analytical Chemistry, 2019, 91, 12661-12669.	3.2	46
29	Carbon-based interlayers in perovskite solar cells. Renewable and Sustainable Energy Reviews, 2020, 124, 109774.	8.2	46
30	Sellmeier equations, group velocity dispersion, and thermo-optic dispersion formulas for CaLnAlO_4 (Ln = Y, Gd) laser host crystals. Optics Letters, 2017, 42, 2275.	1.7	45
31	Anisotropy of electron-phonon interaction in nanoscale CdSe platelets as seen via off-resonant and resonant Raman spectroscopy. Physical Review B, 2013, 88, .	1.1	43
32	Photoluminescence of Ag-In-S/ZnS quantum dots: Excitation energy dependence and low-energy electronic structure. Nano Research, 2019, 12, 1595-1603.	5.8	43
33	Spontaneous emission of guided polaritons by quantum dot coupled to metallic nanowire: Beyond the dipole approximation. Optics Express, 2009, 17, 17570.	1.7	42
34	Nanometer-scale mapping of the strain and Ge content of Ge/Si quantum dots using enhanced Raman scattering by the tip of an atomic force microscope. Physical Review B, 2011, 83, .	1.1	41
35	Luminescent isolated diamond particles with controllably embedded silicon-vacancy colour centres. Journal Physics D: Applied Physics, 2012, 45, 062001.	1.3	39
36	Submicron polymer particles containing fluorescent semiconductor nanocrystals CdSe/ZnS for bioassays. Nanomedicine, 2011, 6, 195-209.	1.7	37

#	Article	IF	CITATIONS
37	Synthesis, characterization and absorption saturation of Co:ZnAl2O4 (gahnite) transparent ceramic and glass-ceramics: A comparative study. Journal of Alloys and Compounds, 2017, 725, 998-1005.	2.8	37
38	FRET between Close-Packed Quasi-Monodispersed PbS QDs in a Porous Matrix. Journal of Physical Chemistry C, 2014, 118, 6531-6535.	1.5	36
39	Raman characterization and UV optical absorption studies of surface plasmon resonance in multishell nanographite. Diamond and Related Materials, 2011, 20, 205-209.	1.8	35
40	Cadmium Chalcogenide Nanoâ€Heteroplatelets: Creating Advanced Nanostructured Materials by Shell Growth, Substitution, and Attachment. Small, 2017, 13, 1702300.	5.2	35
41	Resonant energy transfer in quantum dots: Frequency-domain luminescent spectroscopy. Physical Review B, 2008, 78, .	1.1	34
42	PbS Quantum Dots in a Porous Matrix: Optical Characterization. Journal of Physical Chemistry C, 2013, 117, 12318-12324.	1.5	34
43	Toward Bright Red-Emissive Carbon Dots through Controlling Interaction among Surface Emission Centers. Journal of Physical Chemistry Letters, 2020, 11, 8121-8127.	2.1	34
44	Intraband carrier relaxation in quantum dots embedded in doped heterostructures. Physical Review B, 2003, 68, .	1.1	33
45	Revealing the nature of optical activity in carbon dots produced from different chiral precursor molecules. Light: Science and Applications, 2022, 11, 92.	7.7	33
46	Energy transfer in complexes of water-soluble quantum dots and chlorin e6 molecules in different environments. Beilstein Journal of Nanotechnology, 2013, 4, 895-902.	1.5	32
47	Self-Organization of Colloidal PbS Quantum Dots into Highly Ordered Superlattices. Langmuir, 2015, 31, 506-513.	1.6	32
48	Chiral Optical Properties of TaperedÂSemiconductor Nanoscrolls. ACS Nano, 2017, 11, 7508-7515.	7.3	32
49	Exciton–LO-phonon interaction in CuCl spherical quantum dots studied by resonant hyper-Raman spectroscopy. Physical Review B, 1997, 56, 10332-10337.	1.1	31
50	Long phase-relaxation time in CuCl quantum dots: Four-wave-mixing signals analogous to dye molecules in polymers. Physical Review B, 1998, 57, R15084-R15087.	1.1	31
51	Carbon Nanoparticles as Versatile Auxiliary Components of Perovskiteâ€Based Optoelectronic Devices. Advanced Functional Materials, 2021, 31, 2010768.	7.8	31
52	Chiral carbon dots based on <scp>l</scp> / <scp>d</scp> -cysteine produced <i>via</i> room temperature surface modification and one-pot carbonization. Nanoscale, 2021, 13, 8058-8066.	2.8	31
53	Shape-induced optical activity of chiral nanocrystals. Optics Letters, 2016, 41, 2438.	1.7	30
54	Enhanced intraband carrier relaxation in quantum dots due to the effect of plasmon–LO-phonon density of states in doped heterostructures. Physical Review B, 2005, 71, .	1.1	29

#	Article	IF	CITATIONS
55	Chiral recognition of optically active CoFe ₂ O ₄ magnetic nanoparticles by CdSe/CdS quantum dots stabilised with chiral ligands. Journal of Materials Chemistry C, 2017, 5, 1692-1698.	2.7	29
56	Optical Activity of Chiral Nanoscrolls. Advanced Optical Materials, 2017, 5, 1600982.	3.6	29
57	Giant Stokes Shifts in AgInS ₂ Nanocrystals with Trapped Charge Carriers. Journal of Physical Chemistry C, 2019, 123, 16430-16438.	1.5	29
58	Anomalous features of resonant hyper-Raman scattering in CuBr quantum dots: Evidence of exciton-phonon-coupled states similar to molecules. Physical Review B, 1996, 54, R8321-R8324.	1.1	28
59	Resonant hyper-Raman and second-harmonic scattering in a CdS quantum-dot system. Physical Review B, 1996, 53, R1721-R1724.	1.1	28
60	Electrically controlled polarized photoluminescence of CdSe/ZnS nanorods embedded in a liquid crystal template. Nanotechnology, 2012, 23, 325201.	1.3	28
61	Mixing of quantum states: A new route to creating optical activity. Scientific Reports, 2016, 6, 5.	1.6	28
62	Optical activity of chirally distorted nanocrystals. Journal of Applied Physics, 2016, 119, 194302.	1.1	28
63	Lead-Free Perovskites for Lighting and Lasing Applications: A Minireview. Materials, 2019, 12, 3845.	1.3	28
64	Comparative analysis of Raman spectra of PbS macro- and nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 268-271.	0.2	27
65	Influence of CoO addition on phase separation and crystallization of glasses of the ZnO–Al2O3–SiO2–TiO2 system. Journal of Non-Crystalline Solids, 2011, 357, 3928-3939.	1.5	27
66	Excitation Energy Dependence of the Photoluminescence Quantum Yield of Core/Shell CdSe/CdS Quantum Dots and Correlation with Circular Dichroism. Chemistry of Materials, 2018, 30, 465-471.	3.2	27
67	New many-body mechanism of intraband carrier relaxation in quantum dots embedded in doped heterostructures. Solid State Communications, 2003, 128, 219-223.	0.9	25
68	Enantioselective cytotoxicity of ZnS:Mn quantum dots in A549 cells. Chirality, 2017, 29, 403-408.	1.3	25
69	Calibration of the spectral sensitivity of instruments for the near infrared region. Journal of Applied Spectroscopy, 2011, 78, 433-439.	0.3	24
70	Engineering Optical Activity of Semiconductor Nanocrystals via Ion Doping. Nanophotonics, 2016, 5, 573-578.	2.9	24
71	Field-Induced Broadening of Electroabsorption Spectra of Semiconductor Nanorods and Nanoplatelets. Journal of Physical Chemistry C, 2016, 120, 2379-2385.	1.5	24
72	Optical Anisotropy of Topologically Distorted Semiconductor Nanocrystals. Nano Letters, 2017, 17, 5514-5520.	4.5	24

#	Article	IF	CITATIONS
73	Structural transformations and optical properties of glass-ceramics based on ZnO, β- and α-Zn2SiO4 nanocrystals and doped with Er2O3 and Yb2O3: Part I. The role of heat-treatment. Journal of Luminescence, 2018, 202, 47-56.	1.5	24
74	Size-selective two-photon spectroscopy of CuCl spherical quantum dots. Physical Review B, 1997, 55, 15675-15680.	1.1	23
75	Polarized Raman spectroscopy of multilayer Geâ^•Si(001) quantum dot heterostructures. Journal of Applied Physics, 2004, 96, 2857-2863.	1.1	23
76	Lab-in-a-drop: controlled self-assembly of CdSe/ZnS quantum dots and quantum rods into polycrystalline nanostructures with desired optical properties. Nanotechnology, 2007, 18, 185602.	1.3	23
77	Note: Near infrared spectral and transient measurements of PbS quantum dots luminescence. Review of Scientific Instruments, 2013, 84, 116104.	0.6	23
78	Level Anticrossing of Impurity States in Semiconductor Nanocrystals. Scientific Reports, 2014, 4, 6917.	1.6	23
79	Ligand-Dependent Morphology and Optical Properties of Lead Sulfide Quantum Dot Superlattices. Journal of Physical Chemistry C, 2016, 120, 25061-25067.	1.5	23
80	Chiral quantum supercrystals with total dissymmetry of optical response. Scientific Reports, 2016, 6, 23321.	1.6	23
81	Nonlocal laser annealing to improve thermal contacts between multi-layer graphene and metals. Nanotechnology, 2013, 24, 155301.	1.3	22
82	The influence of thermal treatment conditions (solvothermal <i>versus</i> microwave) and solvent polarity on the morphology and emission of phloroglucinol-based nitrogen-doped carbon dots. Nanoscale, 2021, 13, 3070-3078.	2.8	22
83	Acoustic phonon problem in nanocrystal–dielectric matrix systems. Solid State Communications, 2002, 122, 139-144.	0.9	21
84	Size and Temperature Dependencies of the Low-Energy Electronic Structure of PbS Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 20721-20726.	1.5	21
85	Highly intensive emission of the NVâ^' centers in synthetic HPHT microdiamonds at low nitrogen doping. APL Materials, 2018, 6, .	2.2	21
86	Self-assembly of charged microclusters of CdSe/ZnS core/shell nanodots and nanorods into hierarchically ordered colloidal arrays. Nanotechnology, 2006, 17, 4223-4228.	1.3	20
87	Track membranes with embedded semiconductor nanocrystals: structural and optical examinations. Nanotechnology, 2011, 22, 455201.	1.3	20
88	Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2012, 177, 744-749.	1.7	20
89	Quantum theory of electroabsorption in semiconductor nanocrystals. Optics Express, 2016, 24, A52.	1.7	20
90	Judd-Ofelt modelling and stimulated-emission cross-sections for Tb3+ ions in monoclinic KYb(WO4)2 crystal. Journal of Luminescence, 2017, 190, 37-44.	1.5	20

#	Article	IF	CITATIONS
91	Optical Activity of Semiconductor Gammadions beyond Planar Chirality. Journal of Physical Chemistry Letters, 2018, 9, 2941-2945.	2.1	20
92	Quantum dot energy relaxation mediated by plasmon emission in doped covalent semiconductor heterostructures. Physical Review B, 2007, 76, .	1.1	19
93	Fluorescence of semiconductor nanorods in liquid-crystal composites. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 306-309.	0.2	19
94	Spectral-luminescence study of the formation of QD-sulfophthalocyanine molecule complexes in an aqueous solution. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 726-731.	0.2	19
95	Double quantum dot photoluminescence mediated by incoherent reversible energy transport. Physical Review B, 2010, 81, .	1.1	19
96	Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells. Materials, 2015, 8, 5953-5973.	1.3	19
97	Structural characteristics and spectral properties of novel transparent lithium aluminosilicate glass-ceramics containing (Er,Yb)NbO4 nanocrystals. Journal of Luminescence, 2015, 160, 337-345.	1.5	19
98	Growth, structure, Raman spectra and luminescence of orthorombic Li 2 Mg 2 (MoO 4) 3 crystals doped with Eu 3+ and Ce 3+ ions. Journal of Luminescence, 2017, 188, 154-161.	1.5	19
99	Coherent control of optical-phonon-assisted resonance secondary emission in semiconductor quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 52-60.	0.2	18
100	FRET-Activated Delayed Fluorescence in Densely Packed PbS Quantum-Dot Ensembles. Journal of Physical Chemistry C, 2015, 119, 17016-17022.	1.5	18
101	Does Progressive Nitrogen Doping Intensify Negatively Charged Nitrogen Vacancy Emission from e-Beam-Irradiated Ib Type High-Pressure–High-Temperature Diamonds?. Journal of Physical Chemistry C, 2017, 121, 5232-5240.	1.5	18
102	Photoluminescence of Lead Sulfide Quantum Dots of Different Sizes in a Nanoporous Silicate Glass Matrix. Journal of Physical Chemistry C, 2017, 121, 8645-8652.	1.5	18
103	Spectroscopy of resonance hyper-Raman scattering of light. Uspekhi Fizicheskikh Nauk, 1990, 33, 812-832.	0.3	17
104	Formation of QD-porphyrin molecule complexes in aqueous solutions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2008, 105, 889-895.	0.2	17
105	Microâ€Raman characterization of laserâ€induced local thermoâ€oxidation of thin chromium films. Journal of Raman Spectroscopy, 2011, 42, 1780-1783.	1.2	17
106	Measurement of the luminescence decay times of PbS quantum dots in the near-IR spectral range. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 868-873.	0.2	17
107	Influence of the buffer layer properties on the intensity of Raman scattering of graphene. Journal of Raman Spectroscopy, 2013, 44, 803-809.	1.2	17
108	Fluorescence energy transfer in quantum dot/azo dye complexes in polymer track membranes. Nanoscale Research Letters, 2013, 8, 452.	3.1	17

#	Article	IF	CITATIONS
109	Optically active quantum-dot molecules. Optics Express, 2017, 25, 3811.	1.7	17
110	Strong Enhancement of PbS Quantum Dot NIR Emission Using Plasmonic Semiconductor Nanocrystals in Nanoporous Silicate Matrix. Advanced Optical Materials, 2018, 6, 1701055.	3.6	17
111	Kinetics of pulse-induced photoluminescence from a semiconductor quantum dot. Optics Express, 2012, 20, 27612.	1.7	16
112	Investigation of Complexes of CdTe Quantum Dots with the AlOH-Sulphophthalocyanine Molecules in Aqueous Media. Journal of Physical Chemistry C, 2013, 117, 23425-23431.	1.5	16
113	Optical properties of ordered superstructures formed from cadmium and lead chalcogenide colloidal nanocrystals. Optics Express, 2016, 24, A58.	1.7	16
114	Methanol-induced fast CsBr release results in phase-pure CsPbBr ₃ perovskite nanoplatelets. Nanoscale Advances, 2020, 2, 1973-1979.	2.2	16
115	Coherent Control of Stress-Induced InGaAs Quantum Dots by Means of Phonon-Assisted Resonant Photoluminescence. Physica Status Solidi (B): Basic Research, 2001, 224, 461-464.	0.7	15
116	Intraband carrier relaxation in quantum dots mediated by surface plasmon-phonon excitations. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2004, 97, 56-67.	0.2	15
117	Relaxation of charge carriers in quantum dots with the involvement of plasmon-phonon modes. Semiconductors, 2004, 38, 1065-1073.	0.2	15
118	Anisotropy of optical transitions in ordered ensemble of CdSe quantum rods. Optics Letters, 2013, 38, 3426.	1.7	15
119	Investigation of AgInS2/ZnS Quantum Dots by Magnetic Circular Dichroism Spectroscopy. Materials, 2019, 12, 3616.	1.3	15
120	FRET-Based Analysis of AgInS2/ZnAgInS/ZnS Quantum Dot Recombination Dynamics. Nanomaterials, 2020, 10, 2455.	1.9	15
121	Strongly Luminescent Composites Based on Carbon Dots Embedded in a Nanoporous Silicate Glass. Nanomaterials, 2020, 10, 1063.	1.9	15
122	Layer Number Dependence of Charge Density Wave Phase Transition Between Nearly-Commensurate and Incommensurate Phases in 1T-TaS ₂ . Journal of Physical Chemistry C, 2020, 124, 27176-27184.	1.5	15
123	Evidence of quantum-size effect and electron-phonon interactions in resonance Raman scattering spectra of semiconductor nanocrystals. Journal of Raman Spectroscopy, 1993, 24, 767-773.	1.2	14
124	Phonon-enhanced intraband transitions in InAs self-assembled quantum dots. Journal of Luminescence, 2000, 87-89, 503-505.	1.5	14
125	Dissociative CdSe/ZnS quantum dot-molecule complex for luminescent sensing of metal ions in aqueous solutions. Journal of Applied Physics, 2010, 108, 074306.	1.1	14
126	Reversible photoluminescence quenching of CdSe/ZnS quantum dots embedded in porous glass by ammonia vapor. Nanotechnology, 2013, 24, 335701.	1.3	14

#	Article	IF	CITATIONS
127	Chiral nanoparticles in singular light fields. Scientific Reports, 2017, 7, 45925.	1.6	14
128	Magnetic and Optical Properties of Isolated and Aggregated CoFe ₂ O ₄ Superparamagnetic Nanoparticles Studied by MCD Spectroscopy. Journal of Physical Chemistry C, 2018, 122, 11491-11497.	1.5	14
129	Comment on "Carbon structure in nanodiamonds elucidated from Raman spectroscopy―by V.I. Korepanov etÂal Carbon, 2018, 127, 193-194.	5.4	14
130	Optically Active Semiconductor Nanosprings for Tunable Chiral Nanophotonics. ACS Nano, 2018, 12, 6203-6209.	7.3	14
131	Improved One- and Multiple-Photon Excited Photoluminescence from Cd2+-Doped CsPbBr3 Perovskite NCs. Nanomaterials, 2022, 12, 151.	1.9	14
132	Accumulated photon echo in semiconductor microcrystalline quantum dots. Physical Review B, 1998, 57, R2077-R2080.	1.1	13
133	Electron-electron scattering in a double quantum dot: Effective mass approach. Journal of Chemical Physics, 2010, 133, 104704.	1.2	13
134	Formation of structures based on semiconductor quantum dots and organic molecules in track pore membranes. Journal of Applied Physics, 2013, 113, 214305.	1.1	13
135	Chemical vapor deposition of isolated spherical diamond particles with embedded silicon-vacancy color centers onto the surface of synthetic opal. Semiconductors, 2014, 48, 268-271.	0.2	13
136	Photoinduced electrical response in quantum dots/graphene hybrid structure. Journal of Applied Physics, 2015, 118, 104305.	1.1	13
137	The influence of phthalocyanine aggregation in complexes with CdSe/ZnS quantum dots on the photophysical properties of the complexes. Beilstein Journal of Nanotechnology, 2016, 7, 1018-1027.	1.5	13
138	Intraband optical activity of semiconductor nanocrystals. Chirality, 2017, 29, 159-166.	1.3	13
139	Thin Layer of Semiconductor Plasmonic Nanocrystals for the Enhancement of NIR Fluorophores. Journal of Physical Chemistry C, 2018, 122, 20469-20475.	1.5	13
140	Coherent control of the quasi-elastic resonant secondary emission: Semiconductor quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 92, 732-738.	0.2	12
141	Spectral-luminescence properties of the complexes formed by similarly charged CdTe quantum dots and tetrasulfophthalocyanine molecules. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 (D.78349214 (rgBI\$Overloc
142	Circular Dichroism of Electric-Field-Oriented CdSe/CdS Quantum Dots-in-Rods. ACS Nano, 2016, 10, 8904-8909.	7.3	12
143	A highly luminescent porous metamaterial based on a mixture of gold and alloyed semiconductor nanoparticles. Journal of Materials Chemistry C, 2018, 6, 5278-5285.	2.7	12
144	Non-Toxic Ternary Quantum Dots AgInS2 and AgInS2/ZnS: Synthesis and Optical Properties. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 1041-1046.	0.2	12

#	Article	IF	CITATIONS
145	Graphene–quantum dot hybrid nanostructures with controlled optical and photoelectric properties for solar cell applications. Russian Chemical Reviews, 2019, 88, 370-386.	2.5	12
146	Stable Luminescent Composite Microspheres Based on Porous Silica with Embedded CsPbBr ₃ Perovskite Nanocrystals. ChemNanoMat, 2020, 6, 1080-1085.	1.5	12
147	Carbon Dots with an Emission in the Near Infrared Produced from Organic Dyes in Porous Silica Microsphere Templates. Nanomaterials, 2022, 12, 543.	1.9	12
148	Transient interband light absorption by quantum dots: Degenerate pump-probe spectroscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 358-365.	0.2	11
149	Harnessing the Shape-Induced Optical Anisotropy of a Semiconductor Nanocrystal: A New Type of Intraband Absorption Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 2867-2876.	1.5	11
150	The formation of molecular aggregates of sulfophthalocyanine in complexes with semiconductor nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 738-743.	0.2	11
151	Photoluminescence of a quantum-dot molecule. Journal of Applied Physics, 2015, 117, 014306.	1.1	11
152	Picosecond laser registration of interference pattern by oxidation of thin Cr films. Applied Surface Science, 2017, 404, 63-66.	3.1	11
153	Magneto-Fluorescent Hybrid Sensor CaCO3-Fe3O4-AgInS2/ZnS for the Detection of Heavy Metal Ions in Aqueous Media. Materials, 2020, 13, 4373.	1.3	11
154	Temperature-Dependent Photoluminescent Properties of PbSe Nanoplatelets. Nanomaterials, 2020, 10, 2570.	1.9	11
155	Nature of the boson peak in Raman spectra of sodium borate glass systems: influence of structural and chemical fluctuations and intermolecular interactions. Journal of Raman Spectroscopy, 2000, 31, 819-825.	1.2	10
156	Transient interband light absorption by quantum dots: Nondegenerate case of pump-probe spectroscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 24-32.	0.2	10
157	Size-dependent room-temperature luminescence decay from PbS quantum dots. Proceedings of SPIE, 2012, , .	0.8	10
158	Excitonic phenomena in perovskite quantum-dot supercrystals. Physical Chemistry Chemical Physics, 2018, 20, 25023-25030.	1.3	10
159	Enhanced stability of the optical responses from all-inorganic perovskite nanocrystals embedded in a synthetic opal matrix. Nanotechnology, 2019, 30, 405206.	1.3	10
160	Size Dependence of the Resonant Third-Order Nonlinear Refraction of Colloidal PbS Quantum Dots. Photonics, 2020, 7, 39.	0.9	10
161	Interface Chemical Modification between All-Inorganic Perovskite Nanocrystals and Porous Silica Microspheres for Composite Materials with Improved Emission. Nanomaterials, 2021, 11, 119.	1.9	10
162	A complex for the fluorescence analysis of macro- and microsamples in the near-infrared. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 120.	0.2	9

#	Article	IF	CITATIONS
163	Transient intraband light absorption by quantum dots: Pump-probe spectroscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 798-807.	0.2	9
164	Excitons in gyrotropic quantum-dot supercrystals. Optics Letters, 2017, 42, 2423.	1.7	9
165	Photochemically Induced Circular Dichroism of Semiconductor Quantum Dots. Journal of Physical Chemistry C, 2019, 123, 19979-19983.	1.5	9
166	Optical Properties, Morphology, and Stability of Iodide-Passivated Lead Sulfide Quantum Dots. Materials, 2019, 12, 3219.	1.3	9
167	Ternary Composites with PbS Quantum Dots for Hybrid Photovoltaics. Journal of Physical Chemistry C, 2019, 123, 3115-3121.	1.5	9
168	Thermochemical writing with high spatial resolution on Ti films utilising picosecond laser. Optical Materials Express, 2019, 9, 2729.	1.6	9
169	Surface-enhanced resonance hyper-Raman (SERHR) spectroscopy of photochromatic molecules. Journal of Raman Spectroscopy, 1993, 24, 695-697.	1.2	8
170	DNA topoisomerase I changes the mode of interaction between camptothecin drugs and DNA as probed by UV-resonance Raman spectroscopy. FEBS Letters, 1996, 396, 289-292.	1.3	8
171	Observation of homogeneous broadening in semiconductor nanocrystals by resonant second-harmonic scattering spectroscopy. Physical Review B, 1997, 55, R16041-R16044.	1.1	8
172	Coherent control of thermalized luminescence in semiconductor quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2002, 93, 555-558.	0.2	8
173	Energy transfer in associates of semiconductor quantum dots with tetrapyridinoporphyrazine molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2006, 101, 582-589.	0.2	8
174	Spectral study of the self-organization of quantum dots during the evaporation of colloidal solutions. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 699.	0.2	8
175	Raman scattering for lead telluride-based thin film structures. Optics and Spectroscopy (English) Tj ETQq1 1 0.78	4314 rgB1 0.2	- /Øverlock 1
176	Optically active II-VI semiconductor nanocrystals via chiral phase transfer. Materials Research Society Symposia Proceedings, 2015, 1793, 27-33.	0.1	8
177	Size-dependent Raman and SiV-center luminescence in polycrystalline nanodiamonds produced by shock wave synthesis. RSC Advances, 2016, 6, 51783-51790.	1.7	8
178	Influence of CdSe and CdSe/CdS nanocrystals on the optical activity of chiral organic molecules. Journal of Materials Chemistry C, 2018, 6, 1759-1766.	2.7	8
179	Optical Activity and Circular Dichroism of Perovskite Quantum-Dot Molecules. Journal of Physical Chemistry C, 2019, 123, 2658-2664.	1.5	8
180	Tunable Mie Resonances of Tin-based Iodide Perovskite Islandlike Films with Enhanced Infrared Photoluminescence. Journal of Physical Chemistry Letters, 2020, 11, 3332-3338.	2.1	8

#	Article	IF	CITATIONS
181	Effect of Reactive Ion Etching on the Luminescence of GeV Color Centers in CVD Diamond Nanocrystals. Nanomaterials, 2021, 11, 2814.	1.9	8
182	Photoluminescence of Germanium-Vacancy Color Centers in Diamond Particles Obtained by Chemical Vapor Deposition. Physics of the Solid State, 2020, 62, 919-925.	0.2	8
183	Photoinduced anisotropy in an ensemble of CdSe/ZnS quantum rods. RSC Advances, 2013, 3, 20746.	1.7	7
184	Investigation of biocompatible complexes of Mn^2+-doped ZnS quantum dots with chlorin e6. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, 81, 444.	0.2	7
185	Circular dichroism spectroscopy of complexes of semiconductor quantum dots with chlorin e6. , 2016, , .		7
186	Hybrid structures based on quantum dots and graphene nanobelts. Optics and Spectroscopy (English) Tj ETQq0	0 0 rgBT /	Overlock 10
187	Resonant hyper-Raman scattering in semiconductor quantum dots. Physica B: Condensed Matter, 1996, 219-220, 508-510.	1.3	6
188	Renormalization of energy spectrum of quantum dots under vibrational resonance conditions. Semiconductors, 2001, 35, 1390-1397.	0.2	6
189	Interferometric coherence measurement of stress-inducedInxGa1â^'xAs/GaAsquantum dots at the resonant-luminescence phonon sideband. Physical Review B, 2002, 66, .	1.1	6
190	Photophysical manifestations of interactions of quantum dots with ortho-phenanthroline molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 934-940.	0.2	6
191	Influence of intermolecular interactions on spectroscopic characteristics of metal nanoparticles and their composites. Physical Chemistry Chemical Physics, 2014, 16, 24536-24548.	1.3	6
192	Raman scattering in lead selenide films at a low excitation level. Optics and Spectroscopy (English) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 5
193	Complexes of CdSe/ZnS quantum dots with chlorin E6 in nonaqueous media. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2015, 119, 733-737.	0.2	6
194	Structure and photoluminescence properties of zinc oxide/ytterbium oxide nanocomposites. Journal of Sol-Gel Science and Technology, 2017, 81, 333-337.	1.1	6

195	Magnetic Circular Dichroism in 2D Colloidal Semiconductor Nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 698-702.	0.2	6
196	Study of the Optical Properties of CdZnSe/ZnS-Quantum Dot–Au-Nanoparticle Complexes. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 494-500.	0.2	6
197	2D WS ₂ liquid crystals: tunable functionality enabling diverse applications. Nanoscale, 2019, 11, 16886-16895.	2.8	6
198	Spectral-Time Multiplexing in FRET Complexes of AgInS2/ZnS Quantum Dot and Organic Dyes. Nanomaterials, 2020, 10, 1569.	1.9	6

12

#	Article	IF	CITATIONS
199	Electric-field-enhanced circular dichroism of helical semiconductor nanoribbons. Optics Letters, 2019, 44, 499.	1.7	6
200	Accumulated Photon Echo in CuBr Quantum Dots. Physica Status Solidi A, 1997, 164, 287-290.	1.7	5
201	Liquid-crystal composites with controlled photoluminescence of CdSe/ZnS semiconductor quantum rods. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 110, 897-902.	0.2	5
202	Photoinduced conductivity enhancement in quantum dot/multilayer graphene nanostructures. Materials Research Society Symposia Proceedings, 2015, 1787, 15-19.	0.1	5
203	Analytical theory of real-argument Laguerre–Gaussian beams beyond the paraxial approximation. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1940.	0.8	5
204	From colloidal CdSe quantum dots to microscale optically anisotropic supercrystals through bottom-up self-assembly. Journal of Materials Chemistry C, 2018, 6, 12904-12911.	2.7	5
205	Time-resolved FRET in AgInS ₂ /ZnS-CdSe/ZnS quantum dot systems. Nanotechnology, 2019, 30, 195501.	1.3	5
206	Stability of Optical Responses from Lead-free Perovskite Films. Optics and Spectroscopy (English) Tj ETQq0 0 0 r	gBT /Overl 0.2	oc <u>k</u> 10 Tf 50
207	Ligand-Assisted Formation of Graphene/Quantum Dot Monolayers with Improved Morphological and Electrical Properties. Nanomaterials, 2020, 10, 723.	1.9	5
208	Heterodyne-Detected Accumulated Photon-Echo Spectroscopy of CuCl Quantum Dots. Japanese Journal of Applied Physics, 1999, 38, 577-580.	0.8	4
209	Combination Therapy: Complexing of QDs with Tetrapyrrols and Other Dyes. , 2011, , 351-389.		4
210	Spherical microresonators with luminescent a-Si: C: H coating. Technical Physics Letters, 2013, 39, 341-343.	0.2	4
211	Anisotropy of light absorbed by an ensemble of CdSe quantum nanoplates. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 642.	0.2	4
212	Photoinduced dissociation of complexes of cadmium selenide quantum dots with azo dye molecules. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, 81, 439.	0.2	4
	Simulation analysis of atomic-force images of nanocrystal structures. Journal of Optical Technology		

216	Analytical study of optical activity of chiral-shape nanocrystals. , 2017, , .

The influence of ligand type on self-organization and optical properties of cadmium selenide quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 25-29.

Circular dichroism spectroscopy of complexes based on semiconductor quantum dots and chlorin e6 molecules. Optical Engineering, 2017, 56, 047102.

(A Translation of Opticheskii Zhurnal), 2016, 83, 143.

4

4

0.2

214

#	Article	IF	CITATIONS
217	Orthorombic Yb:Li2Zn2(MoO4)3—a novel potential crystal for broadly tunable lasers. Laser Physics Letters, 2017, 14, 085804.	0.6	4
218	3D superstructures with an orthorhombic lattice assembled by colloidal PbS quantum dots. Nanoscale, 2018, 10, 8313-8319.	2.8	4
219	Water-Soluble Conjugates of ZnS:Mn Quantum Dots with Chlorin e6 for Photodynamic Therapy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 94-98.	0.2	4
220	Functionalized rGO Interlayers Improve the Fill Factor and Current Density in PbS QDs-Based Solar Cells. Materials, 2019, 12, 4221.	1.3	4
221	Surface-enhanced resonance raman scattering studies of indigo dyes adsorbed on colloid silver particles. Journal of Applied Spectroscopy, 1986, 44, 46-50.	0.3	3
222	Anomalous Phase Relaxation Characteristics in CuCl Quantum Dots Analogous to That in Dye-Molecules in Polymer. Physica Status Solidi A, 1997, 164, 437-440.	1.7	3
223	Features of fluorescence of CdSe/ZnS semiconductor quantum rods in multicomponent solutions with pentylcyanobiphenyl. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 108, 941-946.	0.2	3
224	Light absorption involving longitudinal optical phonons in semiconductor quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 51-60.	0.2	3
225	Diagnostics of plasmon resonance in optical absorption spectra of nanographite aqueous suspensions. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2011, 111, 220-223.	0.2	3
226	Self-organization of lead sulfide quantum dots of different sizes. Proceedings of SPIE, 2014, , .	0.8	3
227	Resonant energy transfer in rigid solutions of semiconductor quantum dots with a concentration gradient. Proceedings of SPIE, 2014, , .	0.8	3
228	Optical activity of helical quantum-dot supercrystals. Optics and Spectroscopy (English Translation) Tj ETQq0 0	0 rgBT /O\ .2	verlgck 10 Tf 5
229	Sources of Double-Wave Narrow-Band Emission Based on Diamond Nanoparticles with Simultaneously Introduced Germanium–Vacancy and Silicon–Vacancy Color Centers. Technical Physics Letters, 2020, 46, 871-873.	0.2	3
230	Duo Emission of CVD Nanodiamonds Doped by SiV and GeV Color Centers: Effects of Growth Conditions. Materials, 2022, 15, 3589.	1.3	3
231	Possibility of giant resonance RS and hyper-RS in structural analysis of simple polymethine dyes. Journal of Applied Spectroscopy, 1989, 50, 487-493.	0.3	2
232	Softening of the LO phonons in excited state of CuCl nanocrystals. Journal of Luminescence, 2000, 87-89, 500-502.	1.5	2
233	New mechanism of intraband carrier relaxation in quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1217-1220.	0.8	2
234	Tip-enhanced secondary emission of a semiconductor quantum dot. Physical Review B, 2008, 77, .	1.1	2

#	Article	IF	CITATIONS
235	Fluorescence from Pb 1-x Cd x Se polycrystalline films exited by non-monochromatic light at λ max ~ 0.9 μm. , 2010, , .		2
236	Photophysical properties of CdSe/ZnS quantum dot–porphyrin surface complexes in aqueous media. Theoretical and Experimental Chemistry, 2012, 48, 62-71.	0.2	2
237	Transient intraband absorption of light by semiconductor nanorods. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, 80, 648.	0.2	2
238	Nonradiative resonant energy transfer between PbS QDs in porous matrix. Proceedings of SPIE, 2013, , .	0.8	2
239	Optical properties of two-dimensional (2D) CdSe nanostructures. , 2013, , .		2
240	Phonon-assisted photoluminescence from a semiconductor quantum dot with resonant electron and phonon subsystems. Optics Express, 2014, 22, 19707.	1.7	2
241	Förster resonant energy transfer in lead sulfide QD assemblies. , 2014, , .		2
242	Quantum dots - graphene hybrid structures: interplay of optical and electrical properties. , 2014, , .		2
243	X-ray structural analysis of two-dimensional assembling lead sulfide nanocrystals of different sizes. Optical Engineering, 2015, 55, 081302.	0.5	2
244	Raman analysis of chemical substitution of Cd atoms by Hg in CdSe quantum dots and rods. Optical Engineering, 2016, 55, 017104.	0.5	2
245	Absorption properties of one- and two-dimensional semiconductor nanocrystals in the presence of an electric field. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 101-105.	0.2	2
246	Photoinduced processes in hybrid structures on the basis of Đ⊄Ñ−O2 nanoparticles and CdSe/ZnS quantum dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 106-109.	0.2	2
247	Optical activity of semiconductor nanocrystals with ionic impurities. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 64-68.	0.2	2
248	Effect of Extinction on Separation of Nanoparticle Enantiomers With Chiral Optical Forces. IEEE Photonics Journal, 2017, 9, 1-6.	1.0	2
249	Transparent glass-ceramics with Yb3+,Ho3+:YNbO4 nanocrystals for green phosphors. Journal of Physics: Conference Series, 2017, 917, 062024.	0.3	2
250	Deposition of Magnetite Nanofilms by Pulsed Injection MOCVD in a Magnetic Field. Nanomaterials, 2018, 8, 1064.	1.9	2
251	Luminescent Complexes of Alloyed Quantum Dots and Gold Nanoparticles Bound by Mercaptocarboxylic Acid Molecules. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.784	31 0. æBT	/Oværlock 10
	Photocatalytic Properties of Hybrid Nanostructures Based on Nanoparticles of TiO2 and		

252 Semiconductor Quantum Dots. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 20 57 Td (S

#	Article	IF	CITATIONS
253	Porous flower-like superstructures based on self-assembled colloidal quantum dots for sensing. Scientific Reports, 2019, 9, 617.	1.6	2
254	Band Structure and Intersubband Transitions of Three-Layer Semiconductor Nanoplatelets. Nanomaterials, 2020, 10, 933.	1.9	2
255	Lab-on-Microsphere—FRET-Based Multiplex Sensor Platform. Nanomaterials, 2021, 11, 109.	1.9	2
256	Beyond Charge Transfer: The Impact of Auger Recombination and FRET on PL Quenching in an rGO-QDs System. Nanomaterials, 2021, 11, 1623.	1.9	2
257	Circular dichroism of surface complexes based on quantum dots and azo dye. Chirality, 2018, 30, 261-267.	1.3	2
258	Anisotropic absorption of CdSe/ZnS quantum rods embedded in polymer film. Advances in Nano Research, 2013, 1, 153-158.	0.9	2
259	Quantum Dot-Tetrapyrrole Complexes as Photodynamic Therapy Agents. , 2015, , .		2
260	Terahertz waves polarization rotation in photoexcited single-wall carbon nanotube thin film. Journal of Physics: Conference Series, 2020, 1695, 012097.	0.3	2
261	Key Factors for Tuning Au Self-Assembling SERS Films: from Properties to Structure. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2021, 129, 495.	0.2	2
262	Vibrational spectra of carbon films obtained from acetylene plasma. Journal of Applied Spectroscopy, 1988, 48, 624-628.	0.3	1
263	Surface-enhanced resonance hyper-Raman spectra of bacteriorhodopsin adsorbed on silver colloids. , 1991, , .		1
264	Resonant Luminescence in Semiconductor Quantum Dots under Two-Photon Excitation. Physica Status Solidi (B): Basic Research, 1998, 206, 463-467.	0.7	1
265	Coherent control of the fundamental transition in a single quantum dot. Solid State Communications, 2002, 124, 311-315.	0.9	1
266	A film luminescent nanosensor based on a quantum dot—organic molecule complex. Nanotechnologies in Russia, 2010, 5, 49-57.	0.7	1
267	Optical properties and aging of PbS quantum dots embedded in a porous matrix. Proceedings of SPIE, 2013, , .	0.8	1
268	A porous matrix for studying the optical properties of systems of close-packed quantum dots. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, 81, 449.	0.2	1
269	Analysis of structural and chemical features of CdHgSe nanocrystals via resonance Raman spectroscopy. Proceedings of SPIE, 2014, , .	0.8	1
270	Chiral quantum dot based materials. Proceedings of SPIE, 2014, , .	0.8	1

#	Article	IF	CITATIONS
271	Growth of metallic Ag whisker single crystals on AgI films. Technical Physics, 2014, 59, 1476-1481.	0.2	1

272 Electroabsorption of a semiconductor nanocuboid. Journal of Optical Technology (A Translation of) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50

273	Radiative decay rates of impurity states in semiconductor nanocrystals. AIP Advances, 2015, 5, 107126.	0.6	1
274	Optical properties of conjugates of CdSe/ZnS quantum dots and chlorin e6 in aqueous solution. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2015, 82, 738.	0.2	1
275	Energy transfer efficiency in quantum dot/chlorin e6 complexes. , 2015, , .		1
276	Aggregation of quantum dots in hybrid structures based on TiO ₂ nanoparticles. Proceedings of SPIE, 2016, , .	0.8	1
277	FRET efficiency in surface complexes of CdSe/ZnS quantum dots with azo-dyes. Proceedings of SPIE, 2016, , .	0.8	1
278	Complexes of photosensitizer and CdSe/ZnS quantum dots passivated with BSA: optical properties and intracomplex energy transfer. , 2016, , .		1
279	Energy transfer in rigid solutions with nonuniform distribution of components based on quantum dots and organic molecules. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 88-92.	0.2	1
280	Circular dichroism spectroscopy of chlorin e6 and its complexes with quantum dots in different media. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 96-100.	0.2	1
281	Optical Activity of Semiconductor Nanosprings. Optics and Spectroscopy (English Translation of) Tj ETQq1 1 0.7	84314 rg 0.2	BT [Overlock
282	Electronic and Optical Properties of Perovskite Quantum-Dot Dimer. Semiconductors, 2019, 53, 2158-2161.	0.2	1
283	Photochemically Induced Circular Dichroism of Semiconductor Nanocrystals. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2020, 128, 1230-1235.	0.2	1
284	Photoactivation of CdSe Quantum Nanoplatelet Luminescence. Optics and Spectroscopy (English) Tj ETQq0 0 0	rgBT/Ove	erlock 10 Tf 5
285	Wide-range emitting carbon dots synthesized from O-phenylenediamine by microwave-assisted method. AIP Conference Proceedings, 2020, , .	0.3	1
	The Effect of High Background and Dead Time of an InGaAs/InP Single-Photon Avalanche Photodiode on		

the Registration of Microsecond Range Near-Infrared Luminescence. Optics and Spectroscopy (English) Tj ETQq0 0@2gBT /Overlock 10

287	Nonparabolicity of size-quantized subbands of bilayer semiconductor quantum wells with heterojunction. Optics Express, 2020, 28, 1657.	1.7	1
288	Modern equipment and procedures for the investigation of spontaneous Raman scattering spectra (Review). Journal of Applied Spectroscopy, 1981, 34, 1-32.	0.3	0

#	Article	IF	CITATIONS
289	Coherent control of resonant secondary emission of semiconductor quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1372-1375.	0.8	Ο
290	Polarized Raman Spectroscopy of Single Layer and Multilayer Ge/Si(001) Quantum Dot Heterostructures. NATO Science Series Series II, Mathematics, Physics and Chemistry, 2004, , 139-152.	0.1	0
291	Features of the interaction of quantum dots in CdSe and CdTe systems. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, 78, 149.	0.2	0
292	Strain and Intermixing in Single Geâ^•Si Quantum Dots Observed by Tip-enhanced Raman Spectroscopy. , 2011, , .		0
293	Phonon-assisted secondary emission from a semiconductor quantum dot in the regime of vibrational resonance. , 2012, , .		0
294	Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals. , 2013, , .		0
295	Nanoscale quantum-dot supercrystals. , 2013, , .		0
296	Time-resolved pump-probe spectroscopy of intraband absorption by a semiconductor nanorod. Proceedings of SPIE, 2013, , .	0.8	0
297	Photoinduced polarized luminescence enhancement and darkening in an ensemble of CdSe/ZnS quantum rods. , 2014, , .		0
298	Nanocarbons and quantum dots formation in new hybrid materials. Proceedings of SPIE, 2014, , .	0.8	0
299	Selective photochemical reaction in an ensemble of CdSe/ZnS quantum rods. Optical Engineering, 2014, 53, 087107.	0.5	0
300	Transient photoluminescence from semiconductor nanodumbbells. , 2014, , .		0
301	Phonon-induced photoluminescence from a single quantum dot in the regime vibrational resonance. , 2014, , .		0
302	Transient pump-probe absorption spectroscopy of semiconductor nanodumbbells. , 2014, , .		0
303	Energy Transfer in a Blend of PbS QDs of Different Size. Materials Research Society Symposia Proceedings, 2015, 1787, 7-13.	0.1	0
304	Superstructures from lead sulfide quantum dots. Materials Research Society Symposia Proceedings, 2015, 1784, 1.	0.1	0
305	Hybrid Single Walled Carbon Nanotube - Quantum Dot photosensors. , 2015, , .		0
306	Optically active quantum dots. Proceedings of SPIE, 2015, , .	0.8	0

#	Article	IF	CITATIONS
307	Quantum dot-tetrapyrrole complexes as photodynamic therapy agents. Proceedings of SPIE, 2015, , .	0.8	0
308	Quantum dot based superstructures: PL decay analysis. Journal of Physics: Conference Series, 2016, 741, 012021.	0.3	0
309	Influence of the QD luminescence quantum yield on photocurrent in QD/graphene hybrid structures. Proceedings of SPIE, 2016, , .	0.8	0
310	Obtaining of images of ordered and disordered nanocrystal structures by atomic force microscopy. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2017, 122, 93-95.	0.2	0
311	Circular Dichroism Study of Colloidal Semiconductor Nanoscrolls. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 688-692.	0.2	0
312	Theory of Frenkel Excitons in Planar Arrays of Perovskite Quantum Dots. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 125, 693-697.	0.2	0
313	Luminescence enhancement of alloyed quantum dots bound to gold nanoparticles by mercaptocarboxylic acids in colloidal complexes. Nanotechnology, 2019, 30, 465705.	1.3	0
314	Excitation energy transfer between quantum dot and dye bound to the protein. AIP Conference Proceedings, 2019, , .	0.3	0
315	Engineering the synthesis procedure for PbS nanosheets with controlled optical properties in the near-infrared region. Journal of Physics: Conference Series, 2019, 1410, 012019.	0.3	0
316	Synthesis and energy structure of optical transitions of the nitrogen and sulfur co-doped carbon dots. Journal of Physics: Conference Series, 2019, 1410, 012020.	0.3	0
317	Electrophysical parameters of P3HT:PCBM solar cells. Journal of Physics: Conference Series, 2020, 1461, 012123.	0.3	0
318	Spatial tracking of individual fluid dispersed particles via Raman spectroscopy. Scientific Reports, 2020, 10, 14350.	1.6	0
319	Photostability and Photoinduced Processes in CuInS2/ZnS Quantum Dots and Their Hybrid Structures with Multilayer Graphene Nanoribbons. Optics and Spectroscopy (English Translation of Optika I) Tj ETQq1 1 0.7	'84 6. ⊉4 rgl	BT Øverlock
320	Influence of heteroatoms on optical properties and photoluminescence kinetics of carbon dots. Journal of Physics: Conference Series, 2020, 1461, 012008.	0.3	0
321	Terahertz waves polarization tunability in unaligned single-wall carbon nanotube thin film. , 2021, , .		0
322	<title>Heterostructure optical phonons in dynamics of quantum dot electronic excitations: new experimental evidences</title> ., 2002,,.		0
323	<title>Resonance hyper-Raman and second-harmonic scattering by semiconductor quantum dots embedded in a dielectric medium</title> . , 1996, , .		0
324	Energy transfer efficiency in quantum dot/chlorin e6 complexes. , 2015, , .		0

#	Article	IF	CITATIONS
325	Optical transitions in a complex valence band of semiconductor nanocrystals. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2015, 82, 743.	0.2	0
326	Optical activity of chiral semiconductor gammadions. , 2019, , .		0
327	Electric-field effect on the optical activity of helical semiconductor nanoribbons. , 2019, , .		0
328	NEAR INFRARED COLLOIDAL PbSe/PbS CORE/WING NANOPLATELETS ОBTAINED BY A CATION EXCHANGE REACTION. , 2020, , .		0
329	Optical properties of carbon dots in solvents with different polarity. , 2019, , .		0
330	OPTICAL PROPERTIES STABILITY OF CsPbX3 NANOCRYSTALS EMBEDDED IN POROUS GLASS MATRIX. , 2020, , .		0
331	EFFECT OF LIQUID NITROGEN TREATMENT ON LEAD-FREE (CH3NH3)3BI2I9 PEROVSKITES FILMS. , 2020, , .		0
332	Terahertz waves polarization tunability in photoexcited unaligned single-wall carbon nanotubes. AIP Conference Proceedings, 2020, , .	0.3	0
333	Optically driven terahertz wave polarization control by unaligned carbon nanotubes. , 2020, , .		0
334	Terahertz time-domain spectroscopic polarimetry of carbon nanomaterials-based structures. , 2020, , .		0