
Knut T Lappegård

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7169958/publications.pdf Version: 2024-02-01

ΚΝΗΤΤΙΛΟΡΕΟΔΎΡΟ

#	Article	IF	CITATIONS
1	The total prevalence of diagnosed diabetes and the quality of diabetes care for the adult population in Salten, Norway. Scandinavian Journal of Public Health, 2022, 50, 161-171.	1.2	4
2	Remote Monitoring of CIEDs—For Both Safety, Economy and Convenience?. International Journal of Environmental Research and Public Health, 2022, 19, 312.	1.2	11
3	Factors associated with treatment in primary versus specialist care: A populationâ€based study of people with type 2 and type 1 diabetes. Diabetic Medicine, 2021, 38, e14580.	1.2	5
4	High-Density Lipoprotein Subfractions: Much Ado about Nothing or Clinically Important?. Biomedicines, 2021, 9, 836.	1.4	9
5	Rifaximin or Saccharomyces boulardii in heart failure with reduced ejection fraction: Results from the randomized GutHeart trial. EBioMedicine, 2021, 70, 103511.	2.7	34
6	Comparison of cytokine changes in three different lipoprotein apheresis systems in an ex vivo whole blood model. Journal of Clinical Apheresis, 2020, 35, 104-116.	0.7	3
7	Epipericardial Fat Necrosis: A Case Report and a Review of the Literature. Clinical Medicine Insights: Case Reports, 2020, 13, 117954762094076.	0.3	6
8	Assessing Communication during Remote Follow-Up of Users with Pacemakers in Norway: The NORDLAND Study, a Randomized Trial. International Journal of Environmental Research and Public Health, 2020, 17, 7678.	1.2	3
9	Anti-inflammatory effects of non-statin low-density lipoprotein cholesterol-lowering drugs: an unused potential?. Scandinavian Cardiovascular Journal, 2020, 54, 274-279.	0.4	9
10	Long-Term Socioeconomic Impact of Informal Care Provided to Patients with Pacemakers: Remote vs. Conventional Monitoring. Healthcare (Switzerland), 2020, 8, 175.	1.0	3
11	Effectiveness and Safety in Remote Monitoring of Patients with Pacemakers Five Years after an Implant: The Poniente Study. International Journal of Environmental Research and Public Health, 2020, 17, 1431.	1.2	7
12	Cost–utility analysis of telemonitoring versus conventional hospital-based follow-up of patients with pacemakers. The NORDLAND randomized clinical trial. PLoS ONE, 2020, 15, e0226188.	1.1	5
13	Addition of marine omega-3 fatty acids to statins in familial hypercholesterolemia does not affect inÂvivo or inÂvitro endothelial function. Journal of Clinical Lipidology, 2019, 13, 762-770.	0.6	10
14	Telemonitoring and Quality of Life in Patients after 12 Months Following a Pacemaker Implant: the Nordland Study, a Randomised Trial. International Journal of Environmental Research and Public Health, 2019, 16, 2001.	1.2	10
15	Intensive lipid lowering therapy reduces large, but not small, dense low-density lipoprotein particles measured by gel electrophoresis, in elderly patients with atrial fibrillation. European Journal of Preventive Cardiology, 2019, 26, 2017-2018.	0.8	1
16	Secular and longitudinal trends in cardiovascular risk in a general population using a national risk model: The TromsÃ, Study. European Journal of Preventive Cardiology, 2019, 26, 1852-1861.	0.8	6
17	Granulocyte and monocyte CD11b expression during plasma separation is dependent on complement factor 5 (C5) – an <i>ex vivo</i> study with blood from a C5â€deficient individual. Apmis, 2018, 126, 342-352.	0.9	1
18	Lipoprotein apheresis affects lipoprotein particle subclasses more efficiently compared to the PCSK9 inhibitor evolocumab, a pilot study. Transfusion and Apheresis Science, 2018, 57, 91-96.	0.5	16

Knut T Lappegård

#	Article	IF	CITATIONS
19	Bariatric surgery improves lipoprotein profile in morbidly obese patients by reducing LDL cholesterol, apoB, and SAA/PON1 ratio, increasing HDL cholesterol, but has no effect on cholesterol efflux capacity. Journal of Clinical Lipidology, 2018, 12, 193-202.	0.6	31
20	Health-related quality of life on tele-monitoring for users with pacemakers 6 months after implant: the NORDLAND study, a randomized trial. BMC Geriatrics, 2018, 18, 223.	1.1	13
21	CVD Risk Stratification in the PCSK9 Era: Is There a Role for LDL Subfractions?. Diseases (Basel,) Tj ETQq1 1 0.7	84314 rgB 1.0	T /Overlock 1
22	Recurrence and Severe Worsening of Hepatotoxicity After Reintroduction of Atorvastatin in Combination With Ezetimibe. Clinical Medicine Insights: Case Reports, 2017, 10, 117954761773137.	0.3	6
23	Bariatric surgery reduces fasting total fatty acids and increases n-3 polyunsaturated fatty acids in morbidly obese individuals. Scandinavian Journal of Clinical and Laboratory Investigation, 2017, 77, 628-633.	0.6	9
24	Major Increase in Microbiota-Dependent Proatherogenic Metabolite TMAO One Year After Bariatric Surgery. Metabolic Syndrome and Related Disorders, 2016, 14, 197-201.	0.5	61
25	LDL apheresis activates the complement system and the cytokine network, whereas PCSK9 inhibition with evolocumab induces no inflammatory response. Journal of Clinical Lipidology, 2016, 10, 1481-1487.	0.6	10
26	Transition from LDL apheresis to evolocumab in heterozygous FH is equally effective in lowering LDL, without lowering HDL cholesterol. Atherosclerosis, 2016, 251, 119-123.	0.4	15
27	The complement system and toll-like receptors as integrated players in the pathophysiology of atherosclerosis. Atherosclerosis, 2015, 241, 480-494.	0.4	90
28	Gene expression profiling of Gram-negative bacteria-induced inflammation in human whole blood: The role of complement and CD14-mediated innate immune response. Genomics Data, 2015, 5, 176-183.	1.3	6
29	CD14 and Complement Crosstalk and Largely Mediate the Transcriptional Response to Escherichia coli in Human Whole Blood as Revealed by DNA Microarray. PLoS ONE, 2015, 10, e0117261.	1.1	16
30	A vital role for complement in heart disease. Molecular Immunology, 2014, 61, 126-134.	1.0	61
31	Improved neurocognitive functions correlate with reduced inflammatory burden in atrial fibrillation patients treated with intensive cholesterol lowering therapy. Journal of Neuroinflammation, 2013, 10, 78.	3.1	33
32	Induction of Ventricular Tachycardia by Alternate Current due to an Insufficiently Grounded Electrical System. PACE - Pacing and Clinical Electrophysiology, 2012, 35, e170-2.	0.5	1
33	Human genetic deficiencies reveal the roles of complement in the inflammatory network: Lessons from nature. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15861-15866.	3.3	119
34	Invited commentary. Annals of Thoracic Surgery, 2007, 83, 152.	0.7	0
35	Anti-Inflammatory Effect of Cardiac Resynchronization Therapy. PACE - Pacing and Clinical Electrophysiology, 2006, 29, 753-758.	0.5	37
36	Role of granulocytes and monocytes in the polyvinyl chloride-induced synthesis of interleukin 8, monocyte chemoattractant protein 1, and leukotriene B4. Journal of Biomedical Materials Research - Part A, 2005, 74A, 230-236.	2.1	6

Knut T Lappegård

#	Article	IF	CITATIONS
37	Differential Effect of Heparin Coating and Complement Inhibition on Artificial Surface-Induced Eicosanoid Production. Annals of Thoracic Surgery, 2005, 79, 917-923.	0.7	30
38	Pacemaker implantation in patients with persistent left superior vena cava. Heart and Vessels, 2004, 19, 153-154.	0.5	9
39	Artificial surface-induced cytokine synthesis: effect of heparin coating and complement inhibition. Annals of Thoracic Surgery, 2004, 78, 38-44.	0.7	47
40	Effect of complement inhibition and heparin coating on artificial surface–induced leukocyte and platelet activation. Annals of Thoracic Surgery, 2004, 77, 932-941.	0.7	68