List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7169528/publications.pdf Version: 2024-02-01

Минаммар 7анир

#	Article	IF	CITATIONS
1	Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorganic and Medicinal Chemistry Letters, 2021, 43, 128061.	1.0	30
2	Loss of NQO1 generates genotoxic estrogen-DNA adducts in Fuchs Endothelial Corneal Dystrophy. Free Radical Biology and Medicine, 2020, 147, 69-79.	1.3	17
3	Ultraviolet A light induces DNA damage and estrogen-DNA adducts in Fuchs endothelial corneal dystrophy causing females to be more affected. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 573-583.	3.3	71
4	Simultaneous determination of acetamiprid and 6â€chloronicotinic acid in environmental samples by using ion chromatography hyphenated to online photoinduced fluorescence detector. Journal of Separation Science, 2020, 43, 3921-3930.	1.3	18
5	Synthesis and SAR studies of novel 1,2,4-oxadiazole-sulfonamide based compounds as potential anticancer agents for colorectal cancer therapy. Bioorganic Chemistry, 2020, 98, 103754.	2.0	29
6	Symbiotic prodrugs (SymProDs) dual targeting of NFkappaB and CDK. Chemical Biology and Drug Design, 2020, 96, 773-784.	1.5	10
7	Selective degradation of CDK6 by a palbociclib based PROTAC. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1375-1379.	1.0	95
8	Estrogen Metabolism in African-American Women with and without Breast Cancer: A Pilot Study. Chemical Research in Toxicology, 2019, 32, 190-194.	1.7	4
9	Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3736-3740.	1.0	16
10	Modulation of Cellular Response to Arsenic Trioxide Toxicity by Resveratrol. ACS Omega, 2018, 3, 5511-5515.	1.6	12
11	Synthesis, Antimicrobial Evaluation and In silico Studies of Novel 2,4- disubstituted-1,3-thiazole Derivatives. Letters in Drug Design and Discovery, 2018, 16, 160-173.	0.4	5
12	Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chemical Communications, 2017, 53, 7577-7580.	2.2	167
13	Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. International Journal of Cancer, 2017, 141, 1078-1090.	2.3	32
14	Structure–Activity Relationship Studies with Tetrahydroquinoline Analogs as EPAC Inhibitors. ACS Medicinal Chemistry Letters, 2017, 8, 1183-1187.	1.3	19
15	Suggestive evidence for the induction of colonic aberrant crypts in mice fed sodium nitrite. Nutrition and Cancer, 2016, 68, 105-112.	0.9	13
16	Breast Health and Reducing Breast Cancer Risk: A Functional Medicine Approach. Journal of Alternative and Complementary Medicine, 2015, 21, 321-326.	2.1	5
17	Urinary Excretion of N-Nitroso Compounds in Rats Fed Sodium Nitrite and/or Hot Dogs. Chemical Research in Toxicology, 2014, 27, 1669-1674.	1.7	9
18	Unbalanced estrogen metabolism in ovarian cancer. International Journal of Cancer, 2014, 134, 2414-2423.	2.3	36

#	Article	IF	CITATIONS
19	Associations between Dietary Intake of Fruits and Vegetables in Relation to Urinary Estrogen DNA Adduct Ratio. Open Journal of Preventive Medicine, 2014, 04, 429-437.	0.2	3
20	Reduced formation of depurinating estrogen-DNA adducts by sulforaphane or KEAP1 disruption in human mammary epithelial MCF-10A cells. Carcinogenesis, 2013, 34, 2587-2592.	1.3	34
21	Unbalanced estrogen metabolism in thyroid cancer. International Journal of Cancer, 2013, 133, n/a-n/a.	2.3	47
22	Mechanism of DNA depurination by carcinogens in relation to cancer initiation. IUBMB Life, 2012, 64, 169-179.	1.5	30
23	Formation of diethylstilbestrol–DNA adducts in human breast epithelial cells and inhibition by resveratrol. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 276-281.	1.2	17
24	Resveratrol and N-acetylcysteine block the cancer-initiating step in MCF-10F cells. Free Radical Biology and Medicine, 2011, 50, 78-85.	1.3	34
25	Formation of dopamine quinoneâ€DNA adducts and their potential role in the etiology of Parkinson's disease. IUBMB Life, 2011, 63, 1087-1093.	1.5	36
26	Imbalanced estrogen metabolism in the brain: possible relevance to the etiology of Parkinson's disease. Biomarkers, 2011, 16, 434-444.	0.9	13
27	Benzene and dopamine catechol quinones could initiate cancer or neurogenic disease. Free Radical Biology and Medicine, 2010, 48, 318-324.	1.3	24
28	N-acetylcysteine blocks formation of cancer-initiating estrogen–DNA adducts in cells. Free Radical Biology and Medicine, 2010, 49, 392-400.	1.3	24
29	NAD(P)H:quinone oxidoreductase 1 Arg139Trp and Pro187Ser polymorphisms imbalance estrogen metabolism towards DNA adduct formation in human mammary epithelial cells. Journal of Steroid Biochemistry and Molecular Biology, 2009, 117, 56-66.	1.2	14
30	Prevention of estrogen–DNA adduct formation in MCF-10F cells by resveratrol. Free Radical Biology and Medicine, 2008, 45, 136-145.	1.3	61
31	Reduction of estrogen-induced transformation of mouse mammary epithelial cells by N-acetylcysteine. Journal of Steroid Biochemistry and Molecular Biology, 2008, 109, 22-30.	1.2	29
32	Association of the <i>CYP1B1*3</i> allele with survival in patients with prostate cancer receiving docetaxel. Molecular Cancer Therapeutics, 2008, 7, 19-26.	1.9	79
33	Resveratrol Prevents Estrogen-DNA Adduct Formation and Neoplastic Transformation in MCF-10F Cells. Cancer Prevention Research, 2008, 1, 135-145.	0.7	99
34	Estrogen metabolism and formation of estrogen-DNA adducts in estradiol-treated MCF-10F cells. Journal of Steroid Biochemistry and Molecular Biology, 2007, 105, 150-158.	1.2	67
35	Cytochrome P450 isoforms catalyze formation of catechol estrogen quinones that react with DNA. Metabolism: Clinical and Experimental, 2007, 56, 887-894.	1.5	43
36	Inhibition of Depurinating Estrogenâ î'DNA Adduct Formation by Natural Compounds. Chemical Research in Toxicology, 2007, 20, 1947-1953.	1.7	49

#	Article	IF	CITATIONS
37	Protective roles of quinone reductase and tamoxifen against estrogen-induced mammary tumorigenesis. Oncogene, 2007, 26, 3587-3590.	2.6	41
38	Inhibition of catechol-O-methyltransferase increases estrogen–DNA adduct formation. Free Radical Biology and Medicine, 2007, 43, 1534-1540.	1.3	45
39	Ortho-quinones of benzene and estrogens induce hyperproliferation of human peripheral blood mononuclear cells. Leukemia and Lymphoma, 2006, 47, 2635-2644.	0.6	9
40	The Greater Reactivity of Estradiol-3,4-quinone vs Estradiol-2,3-quinone with DNA in the Formation of Depurinating Adducts:Â Implications for Tumor-Initiating Activity. Chemical Research in Toxicology, 2006, 19, 164-172.	1.7	160
41	Slow loss of deoxyribose from the N7deoxyguanosine adducts of estradiol-3,4-quinone and hexestrol-3′,4′-quinone Steroids, 2005, 70, 29-35.	0.8	37
42	Synthesis of the catechols of natural and synthetic estrogens by using 2-iodoxybenzoic acid (IBX) as the oxidizing agent. Steroids, 2005, 70, 173-178.	0.8	41
43	Protein and amino acids contents of Libyan dates at three stages of development. Journal of the Science of Food and Agriculture, 2004, 84, 481-484.	1.7	12
44	New Glycosides from Salvia moorcroftiana (Lamiaceae). Helvetica Chimica Acta, 2003, 86, 2021-2027.	1.0	3
45	A convenient method for the synthesis of cyclic trithiocarbonates on carbohydrate scaffolds. Tetrahedron Letters, 2003, 44, 315-317.	0.7	19
46	New Triterpenoids from Corchorus trilocularis. Chemical and Pharmaceutical Bulletin, 2003, 51, 851-853.	0.6	8
47	Pharmacological activities of crude acetone extract and purified constituents of Salvia moorcraftiana Wall Phytomedicine, 2002, 9, 749-752.	2.3	21
48	New Cycloartane and Flavonol Glycosides fromCorchorus depressus. Helvetica Chimica Acta, 2002, 85, 689-697.	1.0	13
49	Flavonoid glycosides from Salvia moorcroftiana Wall Carbohydrate Research, 2002, 337, 403-407.	1.1	26
50	Isolation and Structure Analysis of a Glucomannan from the Seeds of Libyan Dates. Journal of Agricultural and Food Chemistry, 2001, 49, 3772-3774.	2.4	41
51	Eight New Diterpenoids fromEuphorbia decipiens. Helvetica Chimica Acta, 2001, 84, 1980-1988.	1.0	15
52	A water-soluble galactomannan from the seeds of Phoenix dactylifera L Carbohydrate Research, 2001, 335, 297-301.	1.1	40
53	Coumarins from the aerial part of Halocnemum strobilaceum. Fìtoterapìâ, 2001, 72, 319-321.	1.1	17
54	Constituents of Salvia moorcroftiana. Fìtoterapìâ, 2001, 72, 720-721.	1.1	3

4

#	Article	IF	CITATIONS
55	New diterpene from Hedychium villosum. Fìtoterapìâ, 2001, 72, 837-838.	1.1	18
56	Three New Diterpenoids from Euphorbia cheiradenia. Helvetica Chimica Acta, 2000, 83, 2751-2755.	1.0	12
57	Phytochemical study of Salvia moorcroftiana. Fìtoterapìâ, 2000, 71, 84-85.	1.1	12
58	A New Triterpenoidal Saponin from the Bark of Guaiacum officinale L Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2000, 55, 227-230.	0.3	3
59	Taraxacin, a New Guaianolide fromTaraxacum wallichii. Journal of Natural Products, 2000, 63, 1010-1011.	1.5	57
60	Two New Aromatic Constituents from Stocksia brahuica. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1999, 54, 940-942.	0.3	2
61	Isoperadione: A New Triterpenoid from Salvia bucharica. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 1999, 54, 415-418.	0.3	8
62	Two New <i>C</i> -Glycosylflavones From <i>Silene Conoidea</i> . Natural Product Research, 1999, 13, 121-129.	0.4	11
63	Bucharioside and buchariol from Salvia bucharica. Phytochemistry, 1999, 52, 1319-1322.	1.4	23
64	Salvadiol: A novel triterpenoid from Salvia bucharica. Tetrahedron Letters, 1999, 40, 7561-7564.	0.7	19
65	Flavonoids of Tephrosia purpurea. Fìtoterapìâ, 1999, 70, 443-445.	1.1	31
66	Salvadiones-A and -B:Â Two Terpenoids Having Novel Carbon Skeleta fromSalvia bucharica. Journal of Organic Chemistry, 1999, 64, 8465-8467.	1.7	28
67	Benzoic acid derivatives from Stocksia brahuica. Phytochemistry, 1998, 48, 1271-1273.	1.4	13