
Arnaud Can

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7169261/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessment of the impact of speed limit reduction and traffic signal coordination on vehicle emissions using an integrated approach. Transportation Research, Part D: Transport and Environment, 2011, 16, 504-508.	3.2	125
2	Traffic noise spectrum analysis: Dynamic modeling vs. experimental observations. Applied Acoustics, 2010, 71, 764-770.	1.7	101
3	Accounting for traffic speed dynamics when calculating COPERT and PHEM pollutant emissions at the urban scale. Transportation Research, Part D: Transport and Environment, 2018, 63, 588-603.	3.2	67
4	Effects of traffic signal coordination on noise and air pollutant emissions. Environmental Modelling and Software, 2012, 35, 74-83.	1.9	66
5	Estimation of road traffic noise emissions: The influence of speed and acceleration. Transportation Research, Part D: Transport and Environment, 2018, 58, 155-171.	3.2	59
6	Correlation analysis of noise and ultrafine particle counts in a street canyon. Science of the Total Environment, 2011, 409, 564-572.	3.9	57
7	Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches. Applied Acoustics, 2014, 83, 32-39.	1.7	55
8	Kriging-based spatial interpolation from measurements for sound level mapping in urban areas. Journal of the Acoustical Society of America, 2018, 143, 2847-2857.	0.5	48
9	Capturing urban traffic noise dynamics through relevant descriptors. Applied Acoustics, 2008, 69, 1270-1280.	1.7	47
10	Modeling Soundscape Pleasantness Using perceptual Assessments and Acoustic Measurements Along Paths in Urban Context. Acta Acustica United With Acustica, 2017, 103, 430-443.	0.8	47
11	A Taxonomy Proposal for the Assessment of the Changes in Soundscape Resulting from the COVID-19 Lockdown. International Journal of Environmental Research and Public Health, 2020, 17, 4205.	1.2	46
12	Improving noise assessment at intersections by modeling traffic dynamics. Transportation Research, Part D: Transport and Environment, 2009, 14, 100-110.	3.2	44
13	Noise mapping based on participative measurements. Noise Mapping, 2016, 3, .	0.7	39
14	Low-Cost Sensors for Urban Noise Monitoring Networks—A Literature Review. Sensors, 2020, 20, 2256.	2.1	33
15	Accounting for traffic dynamics improves noise assessment: Experimental evidence. Applied Acoustics, 2009, 70, 821-829.	1.7	31
16	Sampling approaches to predict urban street noise levels using fixed and temporary microphones. Journal of Environmental Monitoring, 2011, 13, 2710.	2.1	29
17	Dynamic estimation of urban traffic noise: Influence of traffic and noise source representations. Applied Acoustics, 2008, 69, 858-867.	1.7	27
18	Describing and classifying urban sound environments with a relevant set of physical indicators. Journal of the Acoustical Society of America, 2015, 137, 208-218.	0.5	23

Arnaud Can

#	Article	IF	CITATIONS
19	The future of urban sound environments: Impacting mobility trends and insights for noise assessment and mitigation. Applied Acoustics, 2020, 170, 107518.	1.7	19
20	Dynamic Traffic Modeling for Noise Impact Assessment of Traffic Strategies. Acta Acustica United With Acustica, 2010, 96, 482-493.	0.8	18
21	Probabilistic modeling framework for multisource sound mapping. Applied Acoustics, 2018, 139, 34-43.	1.7	18
22	Auditory sensory saliency as a better predictor of change than sound amplitude in pleasantness assessment of reproduced urban soundscapes. Building and Environment, 2019, 148, 730-741.	3.0	18
23	Reduction of Wind Turbine Noise Annoyance: An Operational Approach. Acta Acustica United With Acustica, 2012, 98, 392-401.	0.8	16
24	Cross-calibration of participatory sensor networks for environmental noise mapping. Applied Acoustics, 2016, 110, 99-109.	1.7	16
25	Global and Continuous Pleasantness Estimation of the Soundscape Perceived during Walking Trips through Urban Environments. Applied Sciences (Switzerland), 2017, 7, 144.	1.3	15
26	Road traffic sound level estimation from realistic urban sound mixtures by Non-negative Matrix Factorization. Applied Acoustics, 2019, 143, 229-238.	1.7	15
27	Open-source modeling chain for the dynamic assessment of road traffic noise exposure. Transportation Research, Part D: Transport and Environment, 2021, 94, 102793.	3.2	15
28	Multidimensional analyses of the noise impacts of COVID-19 lockdown. Journal of the Acoustical Society of America, 2022, 151, 911-923.	0.5	14
29	Are vehicle trajectories simulated by dynamic traffic models relevant for estimating fuel consumption?. Transportation Research, Part D: Transport and Environment, 2013, 24, 17-26.	3.2	13
30	Statistical requirements for noise mapping based on mobile measurements using bikes. Applied Acoustics, 2019, 156, 271-278.	1.7	13
31	Global sensitivity analysis for road traffic noise modelling. Applied Acoustics, 2021, 176, 107899.	1.7	13
32	Accounting for the effect of diffuse reflections and fittings within street canyons, on the sound propagation predicted by ray tracing codes. Applied Acoustics, 2015, 96, 83-93.	1.7	12
33	Method for in situ acoustic calibration of smartphone-based sound measurement applications. Applied Acoustics, 2020, 166, 107337.	1.7	12
34	Noise measurements as proxies for traffic parameters in monitoring networks. Science of the Total Environment, 2011, 410-411, 198-204.	3.9	11
35	Statistical study of the relationships between mobile and fixed stations measurements in urban environment. Building and Environment, 2019, 149, 404-414.	3.0	10
36	Noise Indicators to Diagnose Urban Sound Environments at Multiple Spatial Scales. Acta Acustica United With Acustica, 2015, 101, 964-974.	0.8	9

Arnaud Can

#	Article	IF	CITATIONS
37	An Efficient Audio Coding Scheme for Quantitative and Qualitative Large Scale Acoustic Monitoring Using the Sensor Grid Approach. Sensors, 2017, 17, 2758.	2.1	9
38	Data assimilation for urban noise mapping with a meta-model. Applied Acoustics, 2021, 178, 107938.	1.7	8
39	Meta-modeling for urban noise mapping. Journal of the Acoustical Society of America, 2020, 148, 3671-3681.	0.5	8
40	NoiseCapture smartphone application as pedagogical support for education and public awareness. Journal of the Acoustical Society of America, 2022, 151, 3255-3265.	0.5	6
41	Selecting Noise Source and Traffic Representations that Capture Road Traffic Noise Dynamics Near Traffic Signals. Acta Acustica United With Acustica, 2009, 95, 259-269.	0.8	5
42	Towards Traffic Situation Noise Emission Models. Acta Acustica United With Acustica, 2011, 97, 900-903.	0.8	5
43	Probabilistic Modelling of the Temporal Variability of Urban Sound Levels. Acta Acustica United With Acustica, 2018, 104, 94-105.	0.8	5
44	Variability in sound power levels: Implications for static and dynamic traffic models. Transportation Research, Part D: Transport and Environment, 2020, 84, 102339.	3.2	5
45	Influence of road traffic noise peaks on reading task performance and disturbance in a laboratory context. Acta Acustica, 2022, 6, 3.	0.4	4
46	Creation of a corpus of realistic urban sound scenes with controlled acoustic properties. Proceedings of Meetings on Acoustics, 2017, , .	0.3	3
47	Noise Pollution Indicators. , 2015, , 501-513.		2
48	Inverse modeling and joint state-parameter estimation with a noise mapping meta-model. Journal of the Acoustical Society of America, 2021, 149, 3961-3974.	0.5	0
49	Corrigendum to: Influence of road traffic noise peaks on reading task performance and disturbance in a laboratory context. Acta Acustica, 2022, 6, 7.	0.4	0