Asami Mashio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7169084/publications.pdf

Version: 2024-02-01

567281 677142 39 565 15 22 citations h-index g-index papers 41 41 41 542 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Role of Fe plaque on arsenic biotransformation by marine macroalgae. Science of the Total Environment, 2022, 802, 149776.	8.0	7
2	Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. Journal of Hazardous Materials, 2022, 424, 127250.	12.4	9
3	Enhanced remediation of arsenic-contaminated excavated soil using a binary blend ofÂbiodegradable surfactant and chelator. Journal of Hazardous Materials, 2022, 431, 128562.	12.4	12
4	Very strong but exchangeable organic ligand of cobalt in the marginal sea. Limnology and Oceanography, 2022, 67, 1299-1312.	3.1	2
5	Biodegradable Chelator-Assisted Washing and Stabilization of Arsenic-Contaminated Excavated Soils. Water, Air, and Soil Pollution, 2022, 233, .	2.4	5
6	Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal. Chemosphere, 2022, 307, 135671.	8.2	6
7	Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chemical Engineering Journal, 2021, 407, 127225.	12.7	36
8	Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. Journal of Hazardous Materials, 2021, 410, 124569.	12.4	54
9	Freshwater phytoplankton: Salinity stress on arsenic biotransformation. Environmental Pollution, 2021, 270, 116090.	7.5	9
10	Wide-range detection of Cu-binding organic ligands in seawater using reverse titration. Marine Chemistry, 2021, 230, 103927.	2.3	7
11	Budgets and sources of dissolved platinum in the inland seas of Japan. Estuarine, Coastal and Shelf Science, 2021, 253, 107293.	2.1	3
12	â4. Elucidation of the actual status of land-derived environmental pollutants. Nippon Suisan Gakkaishi, 2021, 87, 522-523.	0.1	0
13	Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices. Journal of Hazardous Materials, 2021, 418, 126308.	12.4	21
14	Spatiotemporal variations of platinum in seawater in Otsuchi Bay, Japan after the 2011 tsunami. Science of the Total Environment, 2020, 708, 134659.	8.0	7
15	A technique for the speciation analysis of metal-chelator complexes in aqueous matrices using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Journal of Chromatography A, 2020, 1630, 461528.	3.7	5
16	Dithiocarbamate-modified cellulose-based sorbents with high storage stability for selective removal of arsenite and hazardous heavy metals. RSC Advances, 2020, 10, 30238-30244.	3.6	7
17	Speciation of inorganic selenium in wastewater using liquid electrode plasma-optical emission spectrometry combined with supramolecule-equipped solid-phase extraction system. Microchemical Journal, 2020, 159, 105490.	4.5	7
18	Integrated effects of important environmental factors on arsenic biotransformation and photosynthetic efficiency by marine microalgae. Ecotoxicology and Environmental Safety, 2020, 201, 110797.	6.0	17

#	Article	IF	Citations
19	Arsenic biotransformation potential of marine phytoplankton under a salinity gradient. Algal Research, 2020, 47, 101842.	4.6	10
20	Arsenic biotransformation potential of six marine diatom species: effect of temperature and salinity. Scientific Reports, 2019, 9, 10226.	3.3	34
21	Freshwater phytoplankton: biotransformation of inorganic arsenic to methylarsenic and organoarsenic. Scientific Reports, 2019, 9, 12074.	3.3	27
22	Bioaccumulation and biotransformation of arsenic by the brown macroalga Sargassum patens C. Agardh in seawater: effects of phosphate and iron ions. Journal of Applied Phycology, 2019, 31, 2669-2685.	2.8	28
23	Comparative biotransformation and detoxification potential of arsenic by three macroalgae species in seawater: Evidence from laboratory culture studies. Chemosphere, 2019, 228, 117-127.	8.2	21
24	Arsenic speciation and biotransformation by the marine macroalga Undaria pinnatifida in seawater: A culture medium study. Chemosphere, 2019, 222, 705-713.	8.2	13
25	Determination of multiple chelator complexes in aqueous matrices using ultra-performance liquid chromatography-quadrupole/time-of-flight mass spectrometry. Talanta, 2019, 194, 980-990.	5.5	7
26	Selective recovery of gold, palladium, or platinum from acidic waste solution. Microchemical Journal, 2018, 139, 174-180.	4.5	36
27	Analysis of historical trend of pollution sources of lead in Tokyo Bay based on lead isotope ratios in sediment core. Journal of Oceanography, 2018, 74, 187-196.	1.7	8
28	Chelator-induced recovery of rare earths from end-of-life fluorescent lamps with the aid of mechano-chemical energy. Waste Management, 2018, 80, 17-25.	7.4	25
29	On-site analysis of gold, palladium, or platinum in acidic aqueous matrix using liquid electrode plasma-optical emission spectrometry combined with ion-selective preconcentration. Sensors and Actuators B: Chemical, 2018, 272, 91-99.	7.8	18
30	Organic complexation of copper in estuarine waters: An assessment of the multi-detection window approach. Marine Chemistry, 2018, 204, 144-151.	2.3	12
31	Distribution of zirconium, hafnium, niobium and tantalum in the North Atlantic Ocean, northeastern Indian Ocean and its adjacent seas. Deep-Sea Research Part I: Oceanographic Research Papers, 2018, 140, 128-135.	1.4	11
32	Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmospheric Chemistry and Physics, 2018, 18, 8155-8171.	4.9	27
33	Simultaneous measurement of picomolar zirconium, hafnium, niobium and tantalum in seawater using commercially available chelating resin and subsequent ICP-MS determination. Geochemical Journal, 2018, 52, 427-431.	1.0	5
34	Organic complexation of zinc in a coastal hydrothermal area, Tachibana Bay, Nagasaki, Japan. Geochemical Journal, 2018, 52, e29-e38.	1.0	3
35	Dissolved Platinum Concentrations in Coastal Seawater: Boso to Sanriku Areas, Japan. Archives of Environmental Contamination and Toxicology, 2017, 73, 240-246.	4.1	15
36	Dissolved platinum in rainwater, river water and seawater around Tokyo Bay and Otsuchi Bay in Japan. Estuarine, Coastal and Shelf Science, 2016, 180, 160-167.	2.1	18

3

Asami Mashio

#	Article	IF	CITATIONS
37	Size fractionation of nanoparticulate metal sulfides in oxic water of Lake Teganuma, Japan. Geochemical Journal, 2016, 50, 281-286.	1.0	1
38	Precise determination of dissolved platinum in seawater of the Japan Sea, Sea of Okhotsk and western North Pacific Ocean. Marine Chemistry, 2014, 166, 114-121.	2.3	32
39	Subarctic Pacific Intermediate Water: An Oceanic Highway for the Transport of Trace Metals in the North Pacific. Limnology and Oceanography Bulletin, 0, , .	0.4	0