Agustin Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7168676/publications.pdf

Version: 2024-02-01

98 9,596 55 97
papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters. Journal of Catalysis, 2003, 220, 486-499.	6.2	425
2	Direct Synthesis and Characterization of Hydrophobic Aluminum-Free Tiâ^Beta Zeolite. Journal of Physical Chemistry B, 1998, 102, 75-88.	2.6	395
3	Chemistry, Catalysts, and Processes for Isoparaffin–Olefin Alkylation: Actual Situation and Future Trends. Catalysis Reviews - Science and Engineering, 1993, 35, 483-570.	12.9	380
4	Hydrocracking of Vacuum Gasoil on the Novel Mesoporous MCM-41 Aluminosilicate Catalyst. Journal of Catalysis, 1995, 153, 25-31.	6.2	373
5	Cobalt particle size effects in Fischer–Tropsch synthesis: structural and in situ spectroscopic characterisation on reverse micelle-synthesised Co/ITQ-2 model catalysts. Journal of Catalysis, 2009, 266, 129-144.	6.2	342
6	Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor. Science, 2016, 353, 563-566.	12.6	341
7	Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	336
8	New trends in tailoring active sites in zeolite-based catalysts. Chemical Society Reviews, 2019, 48, 1095-1149.	38.1	330
9	Activity of Ti-Beta Catalyst for the Selective Oxidation of Alkenes and Alkanes. Journal of Catalysis, 1994, 145, 151-158.	6.2	300
10	Solvent Effects during the Oxidation of Olefins and Alcohols with Hydrogen Peroxide on Ti-Beta Catalyst: The Influence of the Hydrophilicity–Hydrophobicity of the Zeolite. Journal of Catalysis, 1996, 161, 11-19.	6.2	269
11	Supported heteropolyacid (HPW) catalysts for the continuous alkylation of isobutane with 2-butene: The benefit of using MCM-41 with larger pore diameters. Journal of Catalysis, 1998, 177, 306-313.	6.2	240
12	Hydrogenation of Aromatics in Diesel Fuels on Pt/MCM-41 Catalysts. Journal of Catalysis, 1997, 169, 480-489.	6.2	238
13	Oxidation of Olefins with Hydrogen Peroxide and tert-Butyl Hydroperoxide on Ti-Beta Catalyst. Journal of Catalysis, 1995, 152, 18-24.	6.2	202
14	Unseeded synthesis of Al-free Ti- \hat{l}^2 zeolite in fluoride medium: a hydrophobic selective oxidation catalyst. Chemical Communications, 1996, , 2367-2368.	4.1	134
15	Cobalt supported on morphologically tailored SBA-15 mesostructures: The impact of pore length on metal dispersion and catalytic activity in the Fischer–Tropsch synthesis. Applied Catalysis A: General, 2009, 367, 146-156.	4.3	134
16	Acidic Cs+, NH4+, and K+Salts of 12-Tungstophosphoric Acid as Solid Catalysts for Isobutane/2-butene Alkylation. Journal of Catalysis, 1996, 164, 422-432.	6.2	132
17	Direct synthesis of DME from syngas on hybrid CuZnAl/ZSM-5 catalysts: New insights into the role of zeolite acidity. Applied Catalysis A: General, 2012, 411-412, 170-179.	4.3	130
18	Zeolites and Zeotypes as catalysts. Advanced Materials, 1995, 7, 137-144.	21.0	129

#	Article	IF	CITATIONS
19	Catalytic performance of mesoporous VOx/SBA-15 catalysts for the partial oxidation of methane to formaldehyde. Applied Catalysis A: General, 2003, 249, 345-354.	4.3	128
20	A detailed study of the activity and deactivation of zeolites in hybrid Co/SiO2-zeolite Fischer–Tropsch catalysts. Journal of Catalysis, 2007, 249, 162-173.	6.2	127
21	Skeletal Isomerization of 1-Butene on MCM-22 Zeolite Catalyst. Journal of Catalysis, 1996, 158, 561-569.	6.2	126
22	Synthesis and catalytic activity of aluminium-free zeolite Ti- \hat{l}^2 oxidation catalysts. Chemical Communications, 1996, , 1339-1340.	4.1	123
23	New bifunctional Ni–H-Beta catalysts for the heterogeneous oligomerization of ethylene. Applied Catalysis A: General, 2013, 467, 509-518.	4.3	123
24	Isobutane/2-butene alkylation on ultrastable Y zeolites: Influence of zeolite unit cell size. Journal of Catalysis, 1994, 146, 185-192.	6.2	120
25	Activity, Selectivity, and Sulfur Resistance of Pt/WOx–ZrO2 and Pt/Beta Catalysts for the Simultaneous Hydroisomerization of n-Heptane and Hydrogenation of Benzene. Journal of Catalysis, 2000, 190, 309-319.	6.2	118
26	Nanofibrous γ-Al2O3 as support for Co-based Fischer–Tropsch catalysts: Pondering the relevance of diffusional and dispersion effects on catalytic performance. Journal of Catalysis, 2009, 263, 292-305.	6.2	117
27	A comparative study of O42â^' /ZrO2 and zeolite beta as catalysts for the isomerization of n-butane and the alkylation of isobutane with 2-butene. Applied Catalysis A: General, 1994, 111, 175-189.	4.3	110
28	The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts. Applied Catalysis A: General, 2002, 230, 203-217.	4.3	109
29	Influence of Process Variables on the Continuous Alkylation of Isobutane with 2-Butene on Superacid Sulfated Zirconia Catalysts. Journal of Catalysis, 1994, 149, 52-60.	6.2	108
30	Hydrocracking-hydroisomerization of n-decane on amorphous silica-alumina with uniform pore diameter. Applied Catalysis A: General, 1997, 152, 107-125.	4.3	106
31	The influence of ZSM-5 zeolite composition and crystal size on the in situ conversion of Fischer–Tropsch products over hybrid catalysts. Applied Catalysis A: General, 2005, 294, 251-259.	4.3	106
32	Proposed pore volume topology of zeolite MCM-22 based on catalytic tests. Applied Catalysis A: General, 1994, 115, 121-134.	4.3	105
33	Epoxidation of unsaturated fatty esters over large-pore Ti-containing molecular sieves as catalysts: important role of the hydrophobic–hydrophilic properties of the molecular sieve. Chemical Communications, 1997, , 795-796.	4.1	102
34	Study of the interaction between components in hybrid CuZnAl/HZSM-5 catalysts and its impact in the syngas-to-DME reaction. Catalysis Today, 2012, 179, 43-51.	4.4	102
35	Nature of Active Nickel Sites and Initiation Mechanism for Ethylene Oligomerization on Heterogeneous Ni-beta Catalysts. ACS Catalysis, 2018, 8, 3903-3912.	11.2	102
36	Catalytic cracking of gasoil. Applied Catalysis, 1989, 55, 65-74.	0.8	101

3

#	Article	IF	CITATIONS
37	Breaking the dispersion-reducibility dependence in oxide-supported cobalt nanoparticles. Journal of Catalysis, 2007, 245, 470-476.	6.2	100
38	Influence of the preparative route on the properties of WOx–ZrO2 catalysts: A detailed structural, spectroscopic, and catalytic study. Journal of Catalysis, 2007, 248, 288-302.	6.2	100
39	Isobutane/2-butene alkylation on zeolite beta: Influence of post-synthesis treatments. Applied Catalysis A: General, 1996, 142, 139-150.	4.3	95
40	Characterization and catalytic properties of cobalt supported on delaminated ITQ-6 and ITQ-2 zeolites for the Fischer–Tropsch synthesis reaction. Journal of Catalysis, 2004, 228, 321-332.	6.2	94
41	Cobalt-Catalyzed Fischer–Tropsch Synthesis: Chemical Nature of the Oxide Support as a Performance Descriptor. ACS Catalysis, 2015, 5, 3323-3335.	11.2	91
42	Catalytic Performance of the New Delaminated ITQ-2 Zeolite for Mild Hydrocracking and Aromatic Hydrogenation Processes. Journal of Catalysis, 2001, 200, 259-269.	6.2	86
43	Mild Hydrocracking of Vacuum Gasoil over NiMo-Beta Zeolite Catalysts: The Role of the Location of the NiMo Phases and the Crystallite Size of the Zeolite. Journal of Catalysis, 1998, 179, 537-547.	6.2	85
44	Zeolite beta as a catalyst for alkylation of isobutane with 2-butene. Influence of synthesis conditions and process variables. Applied Catalysis A: General, 1994, 119, 83-96.	4.3	84
45	Isobutane/2-butene alkylation on MCM-22 catalyst. Influence of zeolite structure and acidity on activity and selectivity. Catalysis Letters, 1994, 28, 187-201.	2.6	77
46	Ethylbenzene hydroisomerization over bifunctional zeolite based catalysts: The influence of framework and extraframework composition and zeolite structure. Journal of Catalysis, 1998, 177, 363-377.	6.2	75
47	Heterogeneous oligomerization of ethylene to liquids on bifunctional Ni-based catalysts: The influence of support properties on nickel speciation and catalytic performance. Catalysis Today, 2016, 277, 78-88.	4.4	72
48	The effect of sulfation conditions and activation temperature of sulfate-doped ZrO2, TiO2 and SnO2 catalysts during isobutane/2-butene alkylation. Applied Catalysis A: General, 1996, 144, 249-268.	4.3	70
49	The Application of Zeolites and Periodic Mesoporous Silicas in the Catalytic Conversion of Synthesis Gas. Topics in Catalysis, 2009, 52, 75-90.	2.8	69
50	The impact of pre-reduction thermal history on the metal surface topology and site-catalytic activity of Fischer–Tropsch catalysts. Journal of Catalysis, 2013, 302, 37-48.	6.2	69
51	New insights into the role of the electronic properties of oxide promoters in Rh-catalyzed selective synthesis of oxygenates from synthesis gas. Journal of Catalysis, 2011, 280, 274-288.	6.2	64
52	Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catalysis Today, 2011, 169, 75-84.	4.4	64
53	The role of extraframework aluminum species in USY catalysts during isobutane/2-butene alkylation. Applied Catalysis A: General, 1996, 134, 169-182.	4.3	59
54	Hydrogen transfer on USY zeolites during gas oil cracking: Influence of the adsorption characteristics of the zeolite catalysts. Journal of Catalysis, 1990, 122, 230-239.	6.2	57

#	Article	IF	Citations
55	Hydrogenation and ring opening of Tetralin over bifunctional catalysts based on the new ITQ-21 zeolite. Applied Catalysis A: General, 2004, 273, 277-286.	4.3	57
56	Zeolites in refining and petrochemistry. Studies in Surface Science and Catalysis, 2005, 157, 337-366.	1.5	56
57	Catalytic behavior of hybrid Co/SiO2-(medium-pore) zeolite catalysts during the one-stage conversion of syngas to gasoline. Applied Catalysis A: General, 2008, 346, 117-125.	4.3	55
58	The impact of zeolite pore structure on the catalytic behavior of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Applied Catalysis A: General, 2013, 468, 102-111.	4.3	53
59	Simultaneous isomerization of n-heptane and saturation of benzene over Pt/Beta catalysts. Catalysis Today, 2001, 65, 117-122.	4.4	49
60	A simple and efficient approach to confine Cu/ZnO methanol synthesis catalysts in the ordered mesoporous SBA-15 silica. Catalysis Today, 2013, 215, 152-161.	4.4	49
61	Diastereoselective epoxidation of allylic alcohols with hydrogen peroxide catalyzed by titanium-containing zeolites or methyltrioxorhenium versus stoichiometric oxidation with dimethyldioxirane: Clues on the active species in the zeolite lattice. Journal of Molecular Catalysis A, 1997, 117, 357-366.	4.8	47
62	Isomorphous substitution in ZSM-22 zeolite. The role of zeolite acidity and crystal size during the skeletal isomerization of n-butene. Applied Catalysis A: General, 1998, 174, 163-175.	4.3	46
63	A rational strategy for preparing Cu–ZnO/H-ZSM-5 hybrid catalysts with enhanced stability during the one-step conversion of syngas to dimethyl ether (DME). Applied Catalysis A: General, 2015, 493, 40-49.	4.3	46
64	Non-oxidative methane dehydroaromatization on Mo/HZSM-5 catalysts: Tuning the acidic and catalytic properties through partial exchange of zeolite protons with alkali and alkaline-earth cations. Applied Catalysis A: General, 2016, 515, 32-44.	4.3	46
65	TiO 2 polymorph dependent SMSI effect in Co-Ru/TiO 2 catalysts and its relevance to Fischer-Tropsch synthesis. Catalysis Today, 2017, 289, 181-191.	4.4	45
66	A new highly efficient method for the synthesis of Ti-Beta zeolite oxidation catalyst. Applied Catalysis A: General, 1995, 133, L185-L189.	4.3	44
67	Dehydroaromatization of methane under non-oxidative conditions over bifunctional Mo/ITQ-2 catalysts. Catalysis Today, 2005, 107-108, 676-684.	4.4	44
68	The influence of zeolite surface-aluminum species on the deactivation of CuZnAl/zeolite hybrid catalysts for the direct DME synthesis. Catalysis Today, 2014, 227, 144-153.	4.4	44
69	Selective isomerization of n-butenes to isobutene on high Si/Al ratio ferrierite in the absence of coke deposits: implications on the reaction mechanism. Applied Catalysis A: General, 1999, 183, 155-165.	4.3	42
70	The key role of support surface tuning during the preparation of catalysts from reverse micellar-synthesized metal nanoparticles. Catalysis Communications, 2007, 8, 1479-1486.	3.3	40
71	Title is missing!. Catalysis Letters, 2002, 83, 37-41.	2.6	39
72	Insights into the Promotion with Ru of Co/TiO ₂ Fischer–Tropsch Catalysts: An In Situ Spectroscopic Study. ACS Catalysis, 2020, 10, 6042-6057.	11.2	39

#	Article	IF	CITATIONS
73	Ethanol conversion into 1,3-butadiene over a mixed Hf-Zn catalyst: Effect of reaction conditions and water content in ethanol. Fuel Processing Technology, 2019, 193, 263-272.	7.2	35
74	Hydroconversion of n-hexadecane over Pt/WOx–ZrO2 catalysts prepared by a PVA-template coprecipitation route. Applied Catalysis A: General, 2006, 309, 224-236.	4.3	33
75	Steering linear 1-alkene, propene or gasoline yields in ethene oligomerization via the interplay between nickel and acid sites. Chemical Engineering Science, 2017, 173, 49-59.	3.8	32
76	n-Hexadecane hydrocracking Single-Event MicroKinetics on Pt/H-beta. Applied Catalysis A: General, 2012, 441-442, 10-20.	4.3	31
77	Ethanol conversion into 1,3-butadiene over a mixed Hf-Zn catalyst: A study of the reaction pathway and catalyst deactivation. Applied Catalysis A: General, 2019, 570, 96-106.	4.3	31
78	Bifunctional noble metal/zeolite catalysts for upgrading low-quality diesel fractions via selective opening of naphthenic rings. Catalysis Science and Technology, 2016, 6, 2528-2542.	4.1	30
79	Zeolite SUZ-4: reproducible synthesis, physicochemical characterization and catalytic evaluation for the skeletal isomerization of n-butenes. Microporous and Mesoporous Materials, 1999, 28, 427-436.	4.4	29
80	Insight into the pore structure of zeolite MCM-22 through catalytic tests Studies in Surface Science and Catalysis, 1994, 84, 859-866.	1.5	27
81	Kinetics of the oxidation of alcohols by hydrogen peroxide on Ti-beta zeolite: The influence of alcohol structure on catalyst reactivity. Applied Catalysis A: General, 1996, 143, 87-100.	4.3	26
82	The impact of support surface area on the SMSI decoration effect and catalytic performance for Fischer-Tropsch synthesis of Co-Ru/TiO2-anatase catalysts. Catalysis Today, 2017, 296, 170-180.	4.4	25
83	Synthesis of ZSM-20. Comparison of properties with zeolite Y. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1001.	1.7	24
84	Enhanced sulfur resistance of bifunctional Pd/HZSM-5 catalyst comprising hierarchical carbon-templated zeolite. Applied Catalysis A: General, 2010, 379, 188-197.	4.3	23
85	Effect of operation conditions on the behaviour of ZSM-5 addition to a RE-USY FCC catalyst. Applied Catalysis, 1991, 73, 195-216.	0.8	18
86	Soft and hard acidity in ion-exchanged Y zeolites: rearrangement of 2-bromopropiophenone ethylene acetal to 2-hydroxyethyl 2-phenylpropanoate. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	14
87	The Mechanism of the Double Bond Cleavage in the Titanium Zeoliteâ€catalyzed Oxidation of αâ€Methylstyrene by Hydrogen Peroxide: the βâ€Hydroperoxy Alcohol as Intermediate. Chemische Berichte, 1996, 129, 1453-1455.	0.2	14
88	A Career in Catalysis: Avelino Corma. ACS Catalysis, 2022, 12, 7054-7123.	11.2	14
89	Hydrocracking catalysts based on the new large-pore ITQ-21 zeolite for maximizing diesel products. Studies in Surface Science and Catalysis, 2004, 154, 2380-2386.	1.5	13
90	The nature of active Ni sites and the role of Al species in the oligomerization of ethylene on mesoporous Ni-Al-MCM-41 catalysts. Applied Catalysis A: General, 2020, 608, 117831.	4.3	12

#	Article	IF	CITATIONS
91	High-performing Ir- and Pt-containing catalysts based on mesoporous beta zeolite for the selective ring opening of decalin. Catalysis Science and Technology, 2020, 10, 1073-1085.	4.1	10
92	Catalytic conversion of furfural-acetone condensation products into bio-derived C8 linear alcohols over Ni Cu/Al-SBA-15. Catalysis Communications, 2018, 114, 42-45.	3.3	9
93	Short-channel mesoporous SBA-15 silica modified by aluminum grafting as a support for CoRu Fischer–Tropsch synthesis catalysts. Catalysis Science and Technology, 2021, 11, 4245-4258.	4.1	7
94	Modulation of zeolite acidity by post-synthesis treatments in Mo/HZSM-5 catalysts for methane dehydroaromatization. Studies in Surface Science and Catalysis, 2008, 174, 1075-1080.	1.5	6
95	Large pore ti-beta zeolite with very low aluminium content: An active and selective catalyst for oxidations using hydrogen peroxide. Industrial Chemistry Library, 1996, 8, 391-404.	0.1	5
96	Copper surface-alloying of H2-permeable Pd-based membrane for integration in Fischer–Tropsch synthesis reactors. Journal of Membrane Science, 2021, 619, 118516.	8.2	4
97	Influence of amines in the synthesis and properties of mesostructured aluminas and assessment as supports for Co-based Fischer-Tropsch synthesis catalysts. Fuel Processing Technology, 2020, 205, 106433.	7. 2	3
98	Transformation of Alkanes on Solid Acid and Bifunctional Catalysts. , 1998, , 35-74.		1