Manuel Stucki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7168608/publications.pdf

Version: 2024-02-01

471509 713466 2,631 22 17 21 citations h-index g-index papers 25 25 25 3668 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis. Nature Communications, 2022, 13, .	12.8	20
2	Mechanisms of genome stability maintenance during cell division. DNA Repair, 2021, 108, 103215.	2.8	9
3	The CIP2A–TOPBP1 axis safeguards chromosome stability and is a synthetic lethal target for BRCA-mutated cancer. Nature Cancer, 2021, 2, 1357-1371.	13.2	55
4	Treacle controls the nucleolar response to rDNA breaks via TOPBP1 recruitment and ATR activation. Nature Communications, 2020, 11, 123.	12.8	53
5	Intracellular C4BPA Levels Regulate NF-κB-Dependent Apoptosis. IScience, 2020, 23, 101594.	4.1	10
6	How Cells Respond to DNA Breaks in Mitosis. Trends in Biochemical Sciences, 2020, 45, 321-331.	7. 5	44
7	MDC1 Interacts with TOPBP1 to Maintain Chromosomal Stability during Mitosis. Molecular Cell, 2019, 74, 571-583.e8.	9.7	97
8	NBS1 promotes the endonuclease activity of the MRE11â€RAD50 complex by sensing CtIP phosphorylation. EMBO Journal, 2019, 38, .	7.8	63
9	Interactome Rewiring Following Pharmacological Targeting of BET Bromodomains. Molecular Cell, 2019, 73, 621-638.e17.	9.7	135
10	Nucleolar responses to DNA double-strand breaks. Nucleic Acids Research, 2016, 44, 538-544.	14.5	63
11	Expression of leukemia inhibitory factor in Mýller glia cells is regulated by a redox-dependent mRNA stability mechanism. BMC Biology, 2015, 13, 30.	3.8	11
12	TORC2 inhibition may boost DNA-damaging chemotherapy. Oncotarget, 2015, 6, 586-587.	1.8	0
13	Effect of MRE11 Loss on PARP-Inhibitor Sensitivity in Endometrial Cancer In Vitro. PLoS ONE, 2014, 9, e100041.	2.5	65
14	Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition. Oncotarget, 2014, 5, 5295-5303.	1.8	120
15	Dynamics of histone H3.3 deposition in proliferating and senescent cells reveals a DAXX-dependent targeting to PML-NBs important for pericentromeric heterochromatin organization. Cell Cycle, 2014, 13, 249-267.	2.6	58
16	The NBS1–Treacle complex controls ribosomal RNA transcription in response to DNA damage. Nature Cell Biology, 2014, 16, 792-803.	10.3	127
17	MDC1: The art of keeping things in focus. Chromosoma, 2010, 119, 337-349.	2.2	83
18	A divalent FHA/BRCTâ€binding mechanism couples the MRE11–RAD50–NBS1 complex to damaged chromatin. EMBO Reports, 2010, 11, 387-392.	4.5	35

#	Article	IF	CITATIONS
19	Histone H2A.X Tyr142 phosphorylation: A novel sWItCH for apoptosis?. DNA Repair, 2009, 8, 873-876.	2.8	36
20	Constitutive phosphorylation of MDC1 physically links the MRE11–RAD50–NBS1 complex to damaged chromatin. Journal of Cell Biology, 2008, 181, 227-240.	5.2	206
21	\hat{l}^3 H2AX and MDC1: Anchoring the DNA-damage-response machinery to broken chromosomes. DNA Repair, 2006, 5, 534-543.	2.8	371
22	MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks. Cell, 2005, 123, 1213-1226.	28.9	957