Dalma Martinovic-Weigelt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7168367/publications.pdf

Version: 2024-02-01

24 papers 1,263 citations

17 h-index 23 g-index

25 all docs 25 docs citations

25 times ranked

1387 citing authors

#	Article	IF	CITATIONS
1	In Silicoanalysis of perturbed steroidogenesis and gonad growth in fathead minnows (P. promelas) exposed to 17α-ethynylestradiol. Systems Biology in Reproductive Medicine, 2015, 61, 122-138.	1.0	3
2	Effects of progesterone and norethindrone on female fathead minnow (<i>Pimephales promelas</i>) steroidogenesis. Environmental Toxicology and Chemistry, 2015, 34, 379-390.	2.2	24
3	Constraints-based stoichiometric analysis of hypoxic stress on steroidogenesis in fathead minnows, Pimephales promelas. Journal of Experimental Biology, 2012, 215, 1753-1765.	0.8	17
4	Behavioral and genomic impacts of a wastewater effluent on the fathead minnow. Aquatic Toxicology, 2011, 101, 38-48.	1.9	80
5	Screening complex effluents for estrogenic activity with the T47Dâ€KBluc cell bioassay: Assay optimization and comparison with in vivo responses in fish. Environmental Toxicology and Chemistry, 2011, 30, 439-445.	2.2	31
6	Characterization of the androgenâ€sensitive MDAâ€kb2 cell line for assessing complex environmental mixtures. Environmental Toxicology and Chemistry, 2010, 29, 1367-1376.	2.2	30
7	In silicopredicted essential genes required for zebrafish (Danio rerio) steroid hormone production. , 2010, , .		O
8	I. Effects of a dopamine receptor antagonist on fathead minnow, Pimephales promelas, reproduction. Ecotoxicology and Environmental Safety, 2010, 73, 472-477.	2.9	17
9	II: Effects of a dopamine receptor antagonist on fathead minnow dominance behavior and ovarian gene expression in the fathead minnow and zebrafish. Ecotoxicology and Environmental Safety, 2010, 73, 478-485.	2.9	15
10	Influence of ovarian stage on transcript profiles in fathead minnow (Pimephales promelas) ovary tissue. Aquatic Toxicology, 2010, 98, 354-366.	1.9	40
11	Use of chemical mixtures to differentiate mechanisms of endocrine action in a small fish model. Aquatic Toxicology, 2010, 99, 389-396.	1.9	43
12	Dynamic Nature of Alterations in the Endocrine System of Fathead Minnows Exposed to the Fungicide Prochloraz. Toxicological Sciences, 2009, 112, 344-353.	1.4	72
13	Treated Wastewater Effluent Reduces Sperm Motility Along an Osmolality Gradient. Archives of Environmental Contamination and Toxicology, 2009, 56, 397-407.	2.1	7
14	Altered gene expression in the brain and ovaries of zebrafish (<i>Danio Rerio</i>) exposed to the aromatase inhibitor fadrozole: Microarray analysis and hypothesis generation. Environmental Toxicology and Chemistry, 2009, 28, 1767-1782.	2.2	48
15	Hypoxia alters gene expression in the gonads of zebrafish (Danio rerio)â~†â~†â~†â—Š. Aquatic Toxicology, 2009, 95 258-272.		68
16	Endocrine disrupting chemicals in fish: Developing exposure indicators and predictive models of effects based on mechanism of action. Aquatic Toxicology, 2009, 92, 168-178.	1.9	234
17	Reproductive toxicity of vinclozolin in the fathead minnow: Confirming an antiâ€androgenic mode of action. Environmental Toxicology and Chemistry, 2008, 27, 478-488.	2.2	94
18	Perturbation of gene expression and steroidogenesis with in vitro exposure of fathead minnow ovaries to ketoconazole. Marine Environmental Research, 2008, 66, 113-115.	1.1	9

#	Article	IF	CITATIONS
19	Relationship of plasma sex steroid concentrations in female fathead minnows to reproductive success and population status. Aquatic Toxicology, 2008, 88, 69-74.	1.9	57
20	Temporal Variation in the Estrogenicity of a Sewage Treatment Plant Effluent and Its Biological Significance. Environmental Science & Environmental Sc	4.6	54
21	Effects of a 3β-Hydroxysteroid Dehydrogenase Inhibitor, Trilostane, on the Fathead Minnow Reproductive Axis. Toxicological Sciences, 2008, 104, 113-123.	1.4	58
22	Transcription of Key Genes Regulating Gonadal Steroidogenesis in Control and Ketoconazole- or Vinclozolin-Exposed Fathead Minnows. Toxicological Sciences, 2007, 98, 395-407.	1.4	83
23	NMR analysis of male fathead minnow urinary metabolites: A potential approach for studying impacts of chemical exposures. Aquatic Toxicology, 2007, 85, 104-112.	1.9	61
24	ENVIRONMENTAL ESTROGENS SUPPRESS HORMONES, BEHAVIOR, AND REPRODUCTIVE FITNESS IN MALE FATHEAD MINNOWS. Environmental Toxicology and Chemistry, 2007, 26, 271.	2.2	118