Amy B Heimberger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7167116/publications.pdf Version: 2024-02-01

AMY R HEIMBERCER

#	Article	IF	CITATIONS
1	Tumor Evolution of Glioma-Intrinsic Gene Expression Subtypes Associates with Immunological Changes in the Microenvironment. Cancer Cell, 2017, 32, 42-56.e6.	7.7	1,282
2	Mesenchymal Differentiation Mediated by NF-κB Promotes Radiation Resistance in Glioblastoma. Cancer Cell, 2013, 24, 331-346.	7.7	856
3	Immunologic Escape After Prolonged Progression-Free Survival With Epidermal Growth Factor Receptor Variant III Peptide Vaccination in Patients With Newly Diagnosed Glioblastoma. Journal of Clinical Oncology, 2010, 28, 4722-4729.	0.8	702
4	Glioma cancer stem cells induce immunosuppressive macrophages/microglia. Neuro-Oncology, 2010, 12, 1113-1125.	0.6	530
5	The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses1. Neuro-Oncology, 2006, 8, 261-279.	0.6	516
6	PD-L1 expression and prognostic impact in glioblastoma. Neuro-Oncology, 2016, 18, 195-205.	0.6	463
7	Prognostic Effect of Epidermal Growth Factor Receptor and EGFRvIII in Glioblastoma Multiforme Patients. Clinical Cancer Research, 2005, 11, 1462-1466.	3.2	446
8	Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight, 2016, 1, .	2.3	356
9	A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro-Oncology, 2015, 17, 854-861.	0.6	335
10	Tuning Sensitivity of CAR to EGFR Density Limits Recognition of Normal Tissue While Maintaining Potent Antitumor Activity. Cancer Research, 2015, 75, 3505-3518.	0.4	327
11	Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro-Oncology, 2017, 19, 1047-1057.	0.6	325
12	Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology, 2011, 13, 324-333.	0.6	306
13	Incidence and Prognostic Impact of FoxP3+ Regulatory T Cells in Human Gliomas. Clinical Cancer Research, 2008, 14, 5166-5172.	3.2	280
14	A Novel Small Molecule Inhibitor of Signal Transducers and Activators of Transcription 3 Reverses Immune Tolerance in Malignant Glioma Patients. Cancer Research, 2007, 67, 9630-9636.	0.4	278
15	Immunosuppressive mechanisms in glioblastoma: Fig. 1 Neuro-Oncology, 2015, 17, vii9-vii14.	0.6	275
16	An epidermal growth factor receptor variant Ill–targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Molecular Cancer Therapeutics, 2009, 8, 2773-2779.	1.9	262
17	Epidermal Growth Factor Receptor Variant III Status Defines Clinically Distinct Subtypes of Glioblastoma. Journal of Clinical Oncology, 2007, 25, 2288-2294.	0.8	260
18	Glioblastoma Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses by the Signal Transducers and Activators of Transcription 3 Pathway. Molecular Cancer Therapeutics, 2010, 9, 67-78.	1.9	253

#	Article	IF	CITATIONS
19	Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncolmmunology, 2018, 7, e1412909.	2.1	247
20	Consensus on the role of human cytomegalovirus in glioblastoma. Neuro-Oncology, 2012, 14, 246-255.	0.6	245
21	Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. Journal of Clinical Investigation, 2018, 129, 137-149.	3.9	242
22	lmmune profiling of human tumors identifies CD73 as a combinatorial target in glioblastoma. Nature Medicine, 2020, 26, 39-46.	15.2	236
23	miR-124 Inhibits STAT3 Signaling to Enhance T Cell–Mediated Immune Clearance of Glioma. Cancer Research, 2013, 73, 3913-3926.	0.4	223
24	Glioma-Associated Cancer-Initiating Cells Induce Immunosuppression. Clinical Cancer Research, 2010, 16, 461-473.	3.2	212
25	Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunology, Immunotherapy, 2008, 57, 123-131.	2.0	210
26	Immune Heterogeneity of Glioblastoma Subtypes: Extrapolation from the Cancer Genome Atlas. Cancer Immunology Research, 2013, 1, 112-122.	1.6	192
27	The natural history of EGFR and EGFRvIII in glioblastoma patients. Journal of Translational Medicine, 2005, 3, 38.	1.8	180
28	Hypoxia Potentiates Glioma-Mediated Immunosuppression. PLoS ONE, 2011, 6, e16195.	1.1	177
29	Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clinical Cancer Research, 2003, 9, 4247-54.	3.2	175
30	The Incidence, Correlation with Tumor-Infiltrating Inflammation, and Prognosis of Phosphorylated STAT3 Expression in Human Gliomas. Clinical Cancer Research, 2008, 14, 8228-8235.	3.2	174
31	The Controversial Role of Microglia in Malignant Gliomas. Clinical and Developmental Immunology, 2013, 2013, 1-12.	3.3	166
32	MiR-138 exerts anti-glioma efficacy by targeting immune checkpoints. Neuro-Oncology, 2016, 18, 639-648.	0.6	161
33	Tumor-specific immunotherapy targeting the EGFRvIII mutation in patients with malignant glioma. Seminars in Immunology, 2008, 20, 267-275.	2.7	156
34	Brain tumors in mice are susceptible to blockade of epidermal growth factor receptor (EGFR) with the oral, specific, EGFR-tyrosine kinase inhibitor ZD1839 (iressa). Clinical Cancer Research, 2002, 8, 3496-502.	3.2	138
35	Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. Journal of Neuroimmunology, 2000, 103, 16-25.	1.1	128
36	EGFRvIIIâ€Targeted Vaccination Therapy of Malignant Glioma. Brain Pathology, 2009, 19, 713-723.	2.1	118

#	Article	IF	CITATIONS
37	Targeting the $\hat{I}\pm v$ integrin/TGF- \hat{I}^2 axis improves natural killer cell function against glioblastoma stem cells. Journal of Clinical Investigation, 2021, 131, .	3.9	117
38	Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro-Oncology, 2016, 18, 1357-1366.	0.6	116
39	Effect of miR-142-3p on the M2 Macrophage and Therapeutic Efficacy Against Murine Glioblastoma. Journal of the National Cancer Institute, 2014, 106, .	3.0	112
40	A Novel Inhibitor of Signal Transducers And Activators Of Transcription 3 Activation Is Efficacious Against Established Central Nervous System Melanoma and Inhibits Regulatory T Cells. Clinical Cancer Research, 2008, 14, 5759-5768.	3.2	111
41	Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: Case study. Neuro-Oncology, 2008, 10, 98-103.	0.6	109
42	Window-of-opportunity clinical trial of pembrolizumab in patients with recurrent glioblastoma reveals predominance of immune-suppressive macrophages. Neuro-Oncology, 2020, 22, 539-549.	0.6	98
43	Immunotherapy coming of age: What will it take to make it standard of care for glioblastoma?. Neuro-Oncology, 2011, 13, 3-13.	0.6	97
44	Modulation of Angiogenic and Inflammatory Response in Glioblastoma by Hypoxia. PLoS ONE, 2009, 4, e5947.	1.1	95
45	Immune biology of glioma associated macrophages and microglia: Functional and therapeutic implications. Neuro-Oncology, 2020, 22, 180-194.	0.6	95
46	Innate immune functions of microglia isolated from human glioma patients. Journal of Translational Medicine, 2006, 4, 15.	1.8	91
47	Immunotherapy for Primary Brain Tumors: No Longer a Matter of Privilege. Clinical Cancer Research, 2014, 20, 5620-5629.	3.2	91
48	Dendritic Cells Pulsed with a Tumor-specific Peptide Induce Long-lasting Immunity and Are Effective against Murine Intracerebral Melanoma. Neurosurgery, 2002, 50, 158-166.	0.6	81
49	FGL2 as a Multimodality Regulator of Tumor-Mediated Immune Suppression and Therapeutic Target in Gliomas. Journal of the National Cancer Institute, 2015, 107, .	3.0	80
50	The PEPvIII-KLH (CDX-110) vaccine in glioblastoma multiforme patients. Expert Opinion on Biological Therapy, 2009, 9, 1087-1098.	1.4	79
51	Targeting 4-1BB Costimulation to the Tumor Stroma with Bispecific Aptamer Conjugates Enhances the Therapeutic Index of Tumor Immunotherapy. Cancer Immunology Research, 2014, 2, 867-877.	1.6	79
52	Microglia promote glioblastoma via mTORâ€mediated immunosuppression of the tumour microenvironment. EMBO Journal, 2020, 39, e103790.	3.5	77
53	A novel phosphorylated STAT3 inhibitor enhances T cell cytotoxicity against melanoma through inhibition of regulatory T cells. Cancer Immunology, Immunotherapy, 2009, 58, 1023-1032.	2.0	74
54	Qki deficiency maintains stemness of glioma stem cells in suboptimal environment by downregulating endolysosomal degradation. Nature Genetics, 2017, 49, 75-86.	9.4	74

#	Article	IF	CITATIONS
55	lgE, allergy, and risk of glioma: Update from the San Francisco Bay Area Adult Glioma Study in the Temozolomide era. International Journal of Cancer, 2009, 125, 680-687.	2.3	73
56	Signal transducer and activator of transcription 3 promotes angiogenesis and drives malignant progression in glioma. Neuro-Oncology, 2012, 14, 1136-1145.	0.6	73
57	Intratumoral Mediated Immunosuppression is Prognostic in Genetically Engineered Murine Models of Glioma and Correlates to Immunotherapeutic Responses. Clinical Cancer Research, 2010, 16, 5722-5733.	3.2	71
58	Modulating Antiangiogenic Resistance by Inhibiting the Signal Transducer and Activator of Transcription 3 Pathway in Glioblastoma. Oncotarget, 2012, 3, 1036-1048.	0.8	71
59	The Role of Tregs in Glioma-Mediated Immunosuppression: Potential Target for Intervention. Neurosurgery Clinics of North America, 2010, 21, 125-137.	0.8	67
60	Dendritic Cells Pulsed with a Tumor-specific Peptide Induce Long-lasting Immunity and Are Effective against Murine Intracerebral Melanoma. Neurosurgery, 2002, 50, 158-166.	0.6	66
61	FGL2 promotes tumor progression in the CNS by suppressing CD103+ dendritic cell differentiation. Nature Communications, 2019, 10, 448.	5.8	65
62	Anti–PD-1 Induces M1 Polarization in the Glioma Microenvironment and Exerts Therapeutic Efficacy in the Absence of CD8 Cytotoxic T Cells. Clinical Cancer Research, 2020, 26, 4699-4712.	3.2	65
63	Comparative Molecular Life History of Spontaneous Canine and Human Gliomas. Cancer Cell, 2020, 37, 243-257.e7.	7.7	59
64	The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers, 2021, 13, 437.	1.7	59
65	Unique challenges for glioblastoma immunotherapy—discussions across neuro-oncology and non-neuro-oncology experts in cancer immunology. Meeting Report from the 2019 SNO Immuno-Oncology Think Tank. Neuro-Oncology, 2021, 23, 356-375.	0.6	59
66	Opening of the Blood–Brain Barrier Using Low-Intensity Pulsed Ultrasound Enhances Responses to Immunotherapy in Preclinical Glioma Models. Clinical Cancer Research, 2021, 27, 4325-4337.	3.2	58
67	The role of STAT3 in tumor-mediated immune suppression. Journal of Neuro-Oncology, 2015, 123, 385-394.	1.4	55
68	Serum microRNA profiling in patients with glioblastoma: a survival analysis. Molecular Cancer, 2017, 16, 59.	7.9	55
69	Regulation of tumor immune suppression and cancer cell survival by CXCL1/2 elevation in glioblastoma multiforme. Science Advances, 2021, 7, .	4.7	54
70	Inhibition of p-STAT3 Enhances IFN-α Efficacy against Metastatic Melanoma in a Murine Model. Clinical Cancer Research, 2010, 16, 2550-2561.	3.2	51
71	The immune landscape of common CNS malignancies: implications for immunotherapy. Nature Reviews Clinical Oncology, 2021, 18, 729-744.	12.5	50
72	Mature myelin maintenance requires Qki to coactivate PPARβ-RXRα–mediated lipid metabolism. Journal of Clinical Investigation, 2020, 130, 2220-2236.	3.9	50

#	Article	IF	CITATIONS
73	Metabolomics profiling in plasma samples from glioma patients correlates with tumor phenotypes. Oncotarget, 2016, 7, 20486-20495.	0.8	49
74	Detection of humoral response in patients with glioblastoma receiving EGFRvIII-KLH vaccines. Journal of Immunological Methods, 2008, 339, 74-81.	0.6	48
75	Discovery of cell surface vimentin targeting mAb for direct disruption of GBM tumor initiating cells. Oncotarget, 2016, 7, 72021-72032.	0.8	44
76	Profiling of patients with glioma reveals the dominant immunosuppressive axis is refractory to immune function restoration. JCI Insight, 2020, 5, .	2.3	43
77	Context-Dependent Clioblastoma–Macrophage/Microglia Symbiosis and Associated Mechanisms. Trends in Immunology, 2021, 42, 280-292.	2.9	42
78	Circadian regulation of cancer cell and tumor microenvironment crosstalk. Trends in Cell Biology, 2021, 31, 940-950.	3.6	42
79	The Duality of Fgl2 - Secreted Immune Checkpoint Regulator Versus Membrane-Associated Procoagulant: Therapeutic Potential and Implications. International Reviews of Immunology, 2014, 35, 1-15.	1.5	41
80	Tumor Vaccines for Malignant Gliomas. Neurotherapeutics, 2017, 14, 345-357.	2.1	41
81	Systematic review of combinations of targeted or immunotherapy in advanced solid tumors. , 2021, 9, e002459.		41
82	ERK1/2 phosphorylation predicts survival following anti-PD-1 immunotherapy in recurrent glioblastoma. Nature Cancer, 2021, 2, 1372-1386.	5.7	39
83	Radiation with STAT3 Blockade Triggers Dendritic Cell–T cell Interactions in the Clioma Microenvironment and Therapeutic Efficacy. Clinical Cancer Research, 2020, 26, 4983-4994.	3.2	38
84	Loss of the AP-2alpha transcription factor is associated with the grade of human gliomas. Clinical Cancer Research, 2005, 11, 267-72.	3.2	38
85	Immunotherapy for human glioma: innovative approaches and recent results. Expert Review of Anticancer Therapy, 2005, 5, 777-790.	1.1	37
86	The tumor microenvironment expression of p‣TAT3 influences the efficacy of cyclophosphamide with WP1066 in murine melanoma models. International Journal of Cancer, 2012, 131, 8-17.	2.3	36
87	CD8+ T-cell–Mediated Immunoediting Influences Genomic Evolution and Immune Evasion in Murine Gliomas. Clinical Cancer Research, 2020, 26, 4390-4401.	3.2	36
88	Circadian Regulator CLOCK Drives Immunosuppression in Glioblastoma. Cancer Immunology Research, 2022, 10, 770-784.	1.6	34
89	Shortened ex vivo manufacturing time of EGFRvIII-specific chimeric antigen receptor (CAR) T cells reduces immune exhaustion and enhances antiglioma therapeutic function. Journal of Neuro-Oncology, 2019, 145, 429-439.	1.4	33
90	Cytochrome P450 1B1 Expression in Glial Cell Tumors: An Immunotherapeutic Target. Clinical Cancer Research, 2007, 13, 3559-3567.	3.2	32

#	Article	IF	CITATIONS
91	The Role of Fibrinogen-Like Protein 2 on Immunosuppression and Malignant Progression in Glioma. Journal of the National Cancer Institute, 2019, 111, 292-300.	3.0	32
92	Immune therapeutic targeting of glioma cancer stem cells. Targeted Oncology, 2010, 5, 217-227.	1.7	31
93	Profiles of brain metastases: Prioritization of therapeutic targets. International Journal of Cancer, 2018, 143, 3019-3026.	2.3	31
94	Blood–brain barrier opening with low intensity pulsed ultrasound for immune modulation and immune therapeutic delivery to CNS tumors. Journal of Neuro-Oncology, 2021, 151, 65-73.	1.4	31
95	Glioblastoma-mediated Immune Dysfunction Limits CMV-specific T Cells and Therapeutic Responses: Results from a Phase I/II Trial. Clinical Cancer Research, 2020, 26, 3565-3577.	3.2	30
96	Epidermal growth factor receptor and variant III targeted immunotherapy. Neuro-Oncology, 2014, 16, viii20-viii25.	0.6	29
97	Redirecting T-Cell Specificity to EGFR Using mRNA to Self-limit Expression of Chimeric Antigen Receptor. Journal of Immunotherapy, 2016, 39, 205-217.	1.2	29
98	Identification of metabolites in plasma for predicting survival in glioblastoma. Molecular Carcinogenesis, 2018, 57, 1078-1084.	1.3	28
99	Cell surface vimentin-targeted monoclonal antibody 86C increases sensitivity to temozolomide in glioma stem cells. Cancer Letters, 2018, 433, 176-185.	3.2	28
100	Mechanisms of action of rapamycin in gliomas. Neuro-Oncology, 2005, 7, 1-11.	0.6	27
101	Immune Checkpoint Inhibitors in Gliomas. Current Oncology Reports, 2017, 19, 23.	1.8	27
102	Epigenetic STING silencing is developmentally conserved in gliomas and can be rescued by methyltransferase inhibition. Cancer Cell, 2022, 40, 439-440.	7.7	27
103	Tumor image-derived texture features are associated with CD3 T-cell infiltration status in glioblastoma. Oncotarget, 2017, 8, 101244-101254.	0.8	25
104	FGL2-wired macrophages secrete CXCL7 to regulate the stem-like functionality of glioma cells. Cancer Letters, 2021, 506, 83-94.	3.2	25
105	Immune modulatory nanoparticle therapeutics for intracerebral glioma. Neuro-Oncology, 2016, 19, now198.	0.6	23
106	Mechanism and therapeutic potential of tumor-immune symbiosis in glioblastoma. Trends in Cancer, 2022, 8, 839-854.	3.8	23
107	Intratumoral Delivery of STING Agonist Results in Clinical Responses in Canine Glioblastoma. Clinical Cancer Research, 2021, 27, 5528-5535.	3.2	22
108	Clinical Applications of a Peptide-Based Vaccine for Glioblastoma. Neurosurgery Clinics of North America, 2010, 21, 95-109.	0.8	21

Amy B Heimberger

#	Article	IF	CITATIONS
109	Therapeutic targets in subependymoma. Journal of Neuroimmunology, 2014, 277, 168-175.	1.1	21
110	Poly-ligand profiling differentiates trastuzumab-treated breast cancer patients according to their outcomes. Nature Communications, 2018, 9, 1219.	5.8	20
111	Replication stress response defects are associated with response to immune checkpoint blockade in nonhypermutated cancers. Science Translational Medicine, 2021, 13, eabe6201.	5.8	19
112	Topotecan enhances immune clearance of gliomas. Cancer Immunology, Immunotherapy, 2009, 58, 259-270.	2.0	18
113	Immune Checkpoint Inhibitors for Brain Metastases. Current Oncology Reports, 2017, 19, 38.	1.8	18
114	Multiplatform profiling of meningioma provides molecular insight and prioritization of drug targets for rational clinical trial design. Journal of Neuro-Oncology, 2018, 139, 469-478.	1.4	18
115	Designing Clinical Trials for Combination Immunotherapy: A Framework for Glioblastoma. Clinical Cancer Research, 2022, 28, 585-593.	3.2	18
116	Interrogating Metabolism in Brain Cancer. Magnetic Resonance Imaging Clinics of North America, 2016, 24, 687-703.	0.6	17
117	Rethinking medulloblastoma from a targeted therapeutics perspective. Journal of Neuro-Oncology, 2018, 139, 713-720.	1.4	17
118	What is the burden of proof for tumor mutational burden in gliomas?. Neuro-Oncology, 2021, 23, 17-22.	0.6	15
119	A first-in-human Phase I trial of the oral p-STAT3 inhibitor WP1066 in patients with recurrent malignant glioma. CNS Oncology, 2022, 11, CNS87.	1.2	15
120	New Approaches to Glioblastoma. Annual Review of Medicine, 2022, 73, 279-292.	5.0	14
121	The Eclectic Nature of Clioma-Infiltrating Macrophages and Microglia. International Journal of Molecular Sciences, 2021, 22, 13382.	1.8	14
122	Prioritization schema for immunotherapy clinical trials in glioblastoma. OncoImmunology, 2016, 5, e1145332.	2.1	13
123	Qki is an essential regulator of microglial phagocytosis in demyelination. Journal of Experimental Medicine, 2021, 218, .	4.2	13
124	Principles of immunotherapy. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 134, 163-181.	1.0	12
125	MiR-181 Family Modulates Osteopontin in Glioblastoma Multiforme. Cancers, 2020, 12, 3813.	1.7	12
126	Immune Microenvironment Landscape in CNS Tumors and Role in Responses to Immunotherapy. Cells, 2021, 10, 2032.	1.8	12

#	Article	IF	CITATIONS
127	Signal transducer and activator of transcription 5b drives malignant progression in a <scp>PDGFB</scp> â€dependent proneural glioma model by suppressing apoptosis. International Journal of Cancer, 2015, 136, 2047-2054.	2.3	11
128	Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncology, 2016, 5, 175-186.	1.2	11
129	The Role of Glioma Microenvironment in Immune Modulation: Potential Targets for Intervention. Letters in Drug Design and Discovery, 2006, 3, 443-453.	0.4	11
130	The therapeutic potential of inhibitors of the signal transducer and activator of transcription 3 for central nervous system malignancies. , 2011, 2, 163.		10
131	Immune landscape of a genetically engineered murine model of glioma compared with human glioma. JCI Insight, 2022, 7, .	2.3	10
132	Reply to M.S. Lesniak. Journal of Clinical Oncology, 2011, 29, 3105-3106.	0.8	9
133	Gliosarcoma vs. glioblastoma: a retrospective case series using molecular profiling. BMC Neurology, 2021, 21, 231.	0.8	9
134	miRNA-mediated immune regulation and immunotherapeutic potential in glioblastoma. Clinical Investigation, 2011, 1, 1637-1650.	0.0	8
135	B7-H3 Specific CAR T Cells for the Naturally Occurring, Spontaneous Canine Sarcoma Model. Molecular Cancer Therapeutics, 2022, 21, 999-1009.	1.9	8
136	yuDetecting the percent of peripheral blood mononuclear cells displaying p-STAT-3 in malignant glioma patients. Journal of Translational Medicine, 2009, 7, 92.	1.8	7
137	Tipping a favorable CNS intratumoral immune response using immune stimulation combined with inhibition of tumor-mediated immune suppression. Oncolmmunology, 2016, 5, e1117739.	2.1	7
138	Cytomegalovirus-targeted immunotherapy and glioblastoma: hype or hope?. Immunotherapy, 2016, 8, 413-423.	1.0	7
139	Central nervous system immune interactome is a function of cancer lineage, tumor microenvironment, and STAT3 expression. JCI Insight, 2022, 7, .	2.3	7
140	CD11c+CD163+ Cells and Signal Transducer and Activator of Transcription 3 (STAT3) Expression Are Common in Melanoma Leptomeningeal Disease. Frontiers in Immunology, 2021, 12, 745893.	2.2	6
141	Cell-directed aptamer therapeutic targeting for cancers including those within the central nervous system. Oncolmmunology, 2022, 11, 2062827.	2.1	6
142	Biological Principles of Brain Tumor Immunotherapy. , 0, , 101-130.		5
143	MicroRNAs as novel immunotherapeutics. Oncolmmunology, 2013, 2, e25124.	2.1	4
144	Germline polymorphisms in myeloid-associated genes are not associated with survival in glioma patients. Journal of Neuro-Oncology, 2018, 136, 33-39.	1.4	4

#	Article	IF	CITATIONS
145	TMIC-60. COMPREHENSIVE SPATIAL CHARACTERIZATION OF IMMUNE CELLS IN THE CNS BRAIN TUMOR MICROENVIRONMENT. Neuro-Oncology, 2019, 21, vi261-vi261.	0.6	4
146	Myeloid Cell Classification and Therapeutic Opportunities Within the Glioblastoma Tumor Microenvironment in the Single Cell-Omics Era. Frontiers in Immunology, 0, 13, .	2.2	4
147	IMPS-28PD-L1 EXPRESSION AND PROGNOSTIC IMPACT IN GLIOBLASTOMA. Neuro-Oncology, 2015, 17, v119.2-v119.	0.6	3
148	Fibrinogen-like protein 2: a potential molecular target for glioblastoma treatment. Expert Opinion on Therapeutic Targets, 2019, 23, 647-649.	1.5	3
149	Immunomodulatory Methods. , 2019, , 297-334.		2
150	Immune Modulatory Short Noncoding RNAs Targeting the Glioblastoma Microenvironment. Frontiers in Oncology, 2021, 11, 682129.	1.3	2
151	IMMU-35. TRANSCRIPTIONALLY DEFINED IMMUNE CONTEXTURE IN HUMAN GLIOMAS AT SINGLE-CELL RESOLUTION. Neuro-Oncology, 2020, 22, ii112-ii112.	0.6	2
152	Reply to M.C. Chamberlain. Journal of Clinical Oncology, 2011, 29, e519-e520.	0.8	1
153	Phase II Trial of Proton Therapy vs. Photon IMRT for GBM: Secondary Analysis Comparison of Progression Free Survival between RANO vs. Clinical Assessment. Neuro-Oncology Advances, 2021, 3, vdab073.	0.4	1
154	Brain Tumor Immunology and Immunotherapy. , 2011, , 1087-1101.		1
155	Next-Generation Sequencing of a Glioblastoma with True Epithelial Differentiation. Journal of Neuropathology and Experimental Neurology, 2022, 81, 239-241.	0.9	1
156	A Window of Opportunity to Overcome Therapeutic Failure in Neuro-Oncology. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2022, 42, 139-146.	1.8	1
157	Immune checkpoint blockade in glioma. , 2019, , 387-396.		0
158	Are radiation and response biomarkers the missing elements for efficacious immunotherapy for glioma patients?. Neuro-Oncology, 2020, 22, 590-591.	0.6	0
159	LMD-20. Immune Suppressive Macrophages and Signal Transducer and Activator of Transcription 3 (STAT3) Expression are common in Melanoma Leptomeningeal Disease. Neuro-Oncology Advances, 2021, 3, iii11-iii12.	0.4	0
160	American Society of Clinical Oncology 2021 Annual Meeting updates on primary brain tumors and CNS metastatic tumors. Future Oncology, 2021, 17, 4425-4429.	1.1	0
161	Innovative Treatment Strategies for High-Grade Gliomas. , 2007, , 171-190.		0
162	Abstract 2548: The central nervous system immune cell interactome is a function of cancer lineage, tumor microenvironment and STAT3 expression. Cancer Research, 2022, 82, 2548-2548.	0.4	0