
Tatiana Dubinina

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7167049/publications.pdf Version: 2024-02-01

ΤΑΤΙΑΝΑ ΠΗΒΙΝΙΝΑ

#	Article	IF	CITATIONS
1	Macroheterocyclic Compounds - a Key Building Block in New Functional Materials and Molecular Devices. Macroheterocycles, 2020, 13, 311-467.	0.5	91
2	Novel near-IR absorbing phenyl-substituted phthalo- and naphthalocyanine complexes of lanthanide(<scp>iii</scp>): synthesis and spectral and electrochemical properties. Dalton Transactions, 2014, 43, 2799-2809.	3.3	48
3	Phenyl-substituted planar binuclear phthalo- and naphthalocyanines: synthesis and investigation of physicochemical properties. Dyes and Pigments, 2012, 93, 1471-1480.	3.7	41
4	Recent advances in chemistry of phthalocyanines bearing electron-withdrawing halogen, nitro and <i>N</i> -substituted imide functional groups and prospects for their practical application. New Journal of Chemistry, 2019, 43, 9314-9327.	2.8	29
5	Plasmon-Induced Light Absorption of Phthalocyanine Layer in Hybrid Nanoparticles: Enhancement Factor and Effective Spectra. Journal of Physical Chemistry C, 2016, 120, 1816-1823.	3.1	27
6	Synthesis and investigation of spectral and electrochemical properties of alkyl-substituted planar binuclear phthalocyanine complexes sharing a common naphthalene ring. Inorganica Chimica Acta, 2010, 363, 1869-1878.	2.4	24
7	Synthesis of phthalocyanines with an extended system of π-electron conjugation. Russian Chemical Reviews, 2013, 82, 865-895.	6.5	21
8	Heteroleptic naphthalo-phthalocyaninates of lutetium: synthesis and spectral and conductivity properties. Dalton Transactions, 2015, 44, 7973-7981.	3.3	19
9	Novel planar and sandwich-type complexes of substituted tetrathieno[2,3-b] porphyrazine: Synthesis and investigation of properties. Dyes and Pigments, 2013, 96, 699-704.	3.7	18
10	Hexadecachloro-substituted lanthanide(III) phthalocyaninates and their hybrid conjugates with gold nanoparticles: Synthesis and optical properties. Polyhedron, 2017, 135, 41-48.	2.2	18
11	Novel octabromo-substituted lanthanide(III) phthalocyanines – Prospective compounds for nonlinear optics. Dyes and Pigments, 2021, 185, 108871.	3.7	18
12	Synthesis of new lanthanide naphthalocyanine complexes based on 6,7-bis(phenoxy)-2,3-naphthalodinitrile and their spectral and electrochemical investigation. Russian Chemical Bulletin, 2008, 57, 1912-1919.	1.5	15
13	Synthesis, optical and electrochemical properties of novel phenyl- and phenoxy-substituted subphthalocyanines. Dyes and Pigments, 2016, 128, 141-148.	3.7	15
14	Lanthanide (III) complexes of 3-(ethylthio)phenyl-substituted phthalocyanines: Synthesis and physicochemical properties. Dyes and Pigments, 2018, 156, 386-394.	3.7	15
15	Zinc complexes of 3-(ethylthio)phenyl-substituted phthalocyanines and naphthalocyanine: Synthesis and investigation of physicochemical properties. Dyes and Pigments, 2017, 144, 41-47.	3.7	14
16	Self-organization of octa-phenyl-2,3-naphthalocyaninato zinc floating layers. New Journal of Chemistry, 2020, 44, 3833-3837.	2.8	14
17	Synthesis and spectral properties of dodecaphenyl-substituted planar binuclear naphthalocyanine magnesium complex sharing a common benzene ring. Mendeleev Communications, 2011, 21, 165-167.	1.6	13
18	Synthesis and spectral properties of nonclassical binuclear thienoporphyrazines. Dyes and Pigments, 2015, 117, 1-6.	3.7	13

TATIANA DUBININA

#	Article	IF	CITATIONS
19	In situ impedance spectroscopy of filament formation by resistive switches in polymer based structures. Scientific Reports, 2018, 8, 9080.	3.3	12
20	MCD spectroscopy and TD-DFT calculations of a naphthalene-ring-bridged coplanar binuclear phthalocyanine dimer. Journal of Porphyrins and Phthalocyanines, 2013, 17, 489-500.	0.8	11
21	Perchlorinated europium, terbium and lutetium mono(phthalocyaninates): Synthesis, investigation of thermal stability and optical properties. Polyhedron, 2018, 156, 14-18.	2.2	11
22	Novel phenyl-substituted pyrazinoporphyrazine complexes of rare-earth elements: optimized synthetic protocols and physicochemical properties. New Journal of Chemistry, 2019, 43, 3153-3161.	2.8	11
23	Octachloro- and Hexadecafluoro-Substituted Lanthanide(III) Phthalocyaninates: Synthesis and Spectral Properties. Macroheterocycles, 2017, 10, 520-525.	0.5	11
24	Phenyl-substituted terbium(III) single- and multiple-decker phthalocyaninates: Synthesis, physicochemical properties and peculiarities of self-assembly in solid phase. Dyes and Pigments, 2019, 170, 107655.	3.7	10
25	A novel hybrid blend based on phenoxy-substituted boron subphthalocyanine for organic photodetectors. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1134-1141.	0.8	9
26	Novel 2-naphthyl substituted zinc naphthalocyanine: synthesis, optical, electrochemical and spectroelectrochemical properties. New Journal of Chemistry, 2020, 44, 7849-7857.	2.8	9
27	Electrochemical and spectroelectrochemical behavior of planar binuclear naphthalocyanines. Journal of Porphyrins and Phthalocyanines, 2011, 15, 1195-1201.	0.8	8
28	Phenoxy-substituted boron subphthalocyanine as a ionophore of ion-selective electrodes. Journal of Analytical Chemistry, 2017, 72, 95-104.	0.9	7
29	Photoelectrochemistry for Measuring the Photocatalytic Activity of Soluble Photosensitizers. ChemPhotoChem, 2020, 4, 300-306.	3.0	7
30	Sandwich-Type Lanthanide(III) Dinaphthalocyanine Complexes Possessing an Intensive Absorption in the Near IR Region: Synthesis and Investigation of Properties. Macroheterocycles, 2012, 5, 366-370.	0.5	6
31	Synthesis and spectral properties of iron(III) tetra- tert -butylphthalocyanine complexes. Mendeleev Communications, 2017, 27, 466-469.	1.6	5
32	Planar and sandwich-type Pr(III) and Nd(III) chlorinated phthalocyaninates: Synthesis, thermal stability and optical properties. Dyes and Pigments, 2020, 174, 108075.	3.7	5
33	Synthesis and Study of Physicochemical Properties of New Substituted Tetrathieno[2,3-b]porphyrazines. Macroheterocycles, 2012, 5, 149-156.	0.5	5
34	Sandwich double-decker Er(<scp>iii</scp>) and Yb(<scp>iii</scp>) complexes containing naphthalocyanine moiety: synthesis and investigation of the effect of a paramagnetic metal center. Dalton Transactions, 2019, 48, 13413-13422.	3.3	4
35	Resonant Plasmonâ€Enhanced Absorption of Charge Transfer Complexes in a Metal–Organic Monolayer. Advanced Optical Materials, 2021, 9, 2100065.	7.3	4
36	Synthesis and Spectral Properties of New Octamethyl Substituted Tetrapyrazinoporphyrazines. Macroheterocycles, 2016, 9, 201-205.	0.5	4

ΤΑΤΙΑΝΑ DUBININA

#	Article	IF	CITATIONS
37	Novel phenoxy-substituted subphthalocyanines possessing an extended π-system: synthesis and property investigation. Russian Chemical Bulletin, 2015, 64, 2253-2256.	1.5	3
38	Self-Organization of Asymmetrical Phthalocyanine Derivative of A3B-Type in Floating Layers and Langmuir - Schaefer Films. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2019, 19, 88-96.	0.1	3
39	Dark and photoinduced cytotoxicity of solubilized hydrophobic octa-and hexadecachloro-substituted lutetium(III) phthalocyanines. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 426, 113747.	3.9	3
40	Novel 4-(tert-butyl)phenyl-substituted lanthanide(III) tetrapyrazinoporphyrazines: synthesis, optical properties and formation of hybrid blends with Au nanoparticles. Polyhedron, 2021, 195, 114987.	2.2	2
41	Self-Organization of A2B Type Boron Subphthalocyanine in Floating Layers and Langmuir-Schaefer Films. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2021, 21, 72-80.	0.1	2
42	Tetraiodophthalocyanines: Simple and convenient synthetic protocol and structural modification via Sonogashira cross-coupling reaction. Inorganica Chimica Acta, 2022, 535, 120855.	2.4	2
43	Photochemical Properties of Octaphenyl-Substituted Erbium Phthalocyanine. Russian Journal of Physical Chemistry B, 2022, 16, 109-117.	1.3	2
44	Palladium complex of octaphenyl-substituted pyrazinoporphyrazine: synthesis, photochemical and photophysical properties. IOP Conference Series: Materials Science and Engineering, 2019, 525, 012027.	0.6	1
45	Thin-film materials based on phthalocyanine derivatives: structure and physico-chemical properties. ITM Web of Conferences, 2019, 30, 08006.	0.5	1
46	Influence of 2,3-naphthalocyanines structure on their supramolecular organization in floating layers. Journal of Physics: Conference Series, 2020, 1560, 012034.	0.4	1
47	Photoactive layers for photovoltaics based on near-infrared absorbing aryl-substituted naphthalocyanine complexes: preparation and investigation of properties. New Journal of Chemistry, 2021, 45, 14815-14821.	2.8	1
48	Evolution of Electron Transport under Resistive Switching in Porphyrazine Films. Semiconductors, 2021, 55, 296-300.	0.5	1
49	Electrochemical and spectroelectrochemical studies of tert-butyl-substituted aluminum phthalocyanine. Polyhedron, 2021, 200, 115136.	2.2	1
50	SAFETY AND EFFECTIVENESS OF TRI VALENT INACTIVATED SPLIT VIRION INFLUENZA VACCINE IN PATIENTS WITH RHEUMATOID DISORD ERS. Klinicist, 2018, 12, 25-28.	0.5	0
51	Optimization of the Parameters of Light-Induced Resistive Switching in Phthalocyanine Films. JETP Letters, 2021, 114, 674-680.	1.4	0