
Se Gyu Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166587/publications.pdf Version: 2024-02-01

SE CVILLANC

#	Article	IF	CITATIONS
1	Boron Nitride Nanotube-Based Separator for High-Performance Lithium-Sulfur Batteries. Nanomaterials, 2022, 12, 11.	4.1	21
2	Diacetylene-Containing Dual-Functional Liquid Crystal Epoxy Resin: Strategic Phase Control for Topochemical Polymerization of Diacetylenes and Thermal Conductivity Enhancement. Macromolecules, 2022, 55, 4402-4410.	4.8	19
3	Fluorescence Switchable Block Copolymer Particles with Doubly Alternate‣ayered Nanoparticle Arrays. Small, 2021, 17, e2101222.	10.0	16
4	Subnanometer Thick Carbon-Layer-Encapsulated Silver Nanoparticles Selectively Neutralizing Human Cancer Cells and Pathogens through Controlled Release of Ag ⁺ Ions. ACS Applied Nano Materials, 2021, 4, 7295-7308.	5.0	7
5	Purification of boron nitride nanotubes by functionalization and removal of poly(4-vinylpyridine). Applied Surface Science, 2021, 555, 149722.	6.1	16
6	Insight into BN Impurity Formation during Boron Nitride Nanotube Synthesis by High-Temperature Plasma. ACS Omega, 2021, 6, 27418-27429.	3.5	9
7	Light-Active, Reversibly Shape-Shifting Block Copolymer Particles Using Photo-switchable Au Nanoparticle Surfactants. Chemistry of Materials, 2021, 33, 9769-9779.	6.7	14
8	Interfacial Instability-Driven Morphological Transition of Prolate Block Copolymer Particles: Striped Football, Larva to Sphere. Macromolecules, 2020, 53, 7198-7206.	4.8	24
9	Entropy-Driven Assembly of Nanoparticles within Emulsion-Evaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions. Chemistry of Materials, 2020, 32, 7036-7043.	6.7	26
10	Single- and double-walled boron nitride nanotubes: Controlled synthesis and application for water purification. Scientific Reports, 2020, 10, 7416.	3.3	25
11	Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials, 2020, 12, .	7.9	36
12	Effect of Polymeric <i>In Situ</i> Stabilizers on Dispersion Homogeneity of Nanofillers and Thermal Conductivity Enhancement of Composites. Langmuir, 2020, 36, 5563-5570.	3.5	9
13	Light-Responsive, Shape-Switchable Block Copolymer Particles. Journal of the American Chemical Society, 2019, 141, 15348-15355.	13.7	90
14	Dual growth mode of boron nitride nanotubes in high temperature pressure laser ablation. Scientific Reports, 2019, 9, 15674.	3.3	19
15	Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. Journal of Polymer Science Part A, 2019, 57, 708-715.	2.3	52
16	High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. Journal of Membrane Science, 2018, 551, 172-179.	8.2	38
17	Mechanistic Study on the Shape Transition of Block Copolymer Particles Driven by Length-Controlled Nanorod Surfactants. Chemistry of Materials, 2018, 30, 8669-8678.	6.7	36
18	Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization. ACS Macro Letters, 2018, 7, 1180-1185.	4.8	64

Se Gyu Jang

#	Article	IF	CITATIONS
19	Multidimensional Design of Anisotropic Polymer Particles from Solventâ€Evaporative Emulsion. Advanced Functional Materials, 2018, 28, 1802961.	14.9	140
20	Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Composites Science and Technology, 2017, 141, 99-105.	7.8	67
21	Processable high internal phase Pickering emulsions using depletion attraction. Nature Communications, 2017, 8, 14305.	12.8	127
22	Synthesis and characterization of new diamines containing rigid aromatic ester units as curing agent for high performance epoxy resin. Macromolecular Research, 2017, 25, 763-766.	2.4	3
23	Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions. Polymer Chemistry, 2017, 8, 2806-2814.	3.9	40
24	Boron nitride nanotubes as a heat sinking and stress-relaxation layer for high performance light-emitting diodes. Nanoscale, 2017, 9, 16223-16231.	5.6	6
25	Nanostructured Particles: Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles (Adv.) Tj ETQq1 (1 0,784314 21.0	4 rgBT /Ovel
26	Shape-Tunable Biphasic Janus Particles as pH-Responsive Switchable Surfactants. Macromolecules, 2017, 50, 9276-9285.	4.8	80
27	Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles. Advanced Materials, 2017, 29, 1700608.	21.0	71
28	Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites. Composites Research, 2017, 30, 1-6.	0.1	1
29	Nanoparticles as structureâ€directing agents for controlling the orientation of block copolymer microdomain in thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 118-127.	2.1	10
30	Tailoring block copolymer and polymer blend morphology using nanoparticle surfactants. Journal of Polymer Science Part A, 2016, 54, 228-237.	2.3	22
31	Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano, 2016, 10, 5243-5251.	14.6	92
32	Isolation and Crystal Structure Determination of Piperazine Dicarbamate Obtained from a Direct Reaction between Piperazine and Carbon Dioxide in Methanol. Bulletin of the Korean Chemical Society, 2016, 37, 1854-1857.	1.9	6
33	Engineering the Shape of Block Copolymer Particles by Surface-Modulated Graphene Quantum Dots. Chemistry of Materials, 2016, 28, 830-837.	6.7	71
34	Performance and economic analysis of commercial-scale coal-fired power plant with post-combustion CO2 capture. Korean Journal of Chemical Engineering, 2015, 32, 800-807.	2.7	16
35	Monodipserse Nanostructured Spheres of Block Copolymers and Nanoparticles via Cross-Flow Membrane Emulsification. Chemistry of Materials, 2015, 27, 6314-6321.	6.7	72
36	Titelbild: A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles (Angew. Chem. 27/2014). Angewandte Chemie, 2014, 126, 6947-6947.	2.0	0

Se Gyu Jang

#	Article	IF	CITATIONS
37	A Facile Synthesis of Dynamic, Shapeâ€Changing Polymer Particles. Angewandte Chemie - International Edition, 2014, 53, 7018-7022.	13.8	200
38	Size-Controlled Nanoparticle-Guided Assembly of Block Copolymers for Convex Lens-Shaped Particles. Journal of the American Chemical Society, 2014, 136, 9982-9989.	13.7	132
39	Multicolor Emission of Hybrid Block Copolymer–Quantum Dot Microspheres by Controlled Spatial Isolation of Quantum Dots. Small, 2013, 9, 2667-2672.	10.0	65
40	Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 6649-6657.	13.7	220
41	Surface Intaglio Nanostructures on Microspheres of Gold-Cored Block Copolymer Spheres. Chemistry of Materials, 2013, 25, 4416-4422.	6.7	35
42	Test Bed Studies with Highly Efficient Amine CO2Solvent (KoSol-4). Korean Chemical Engineering Research, 2013, 51, 267-271.	0.2	7
43	Morphology Evolution of PS- <i>b</i> -P2VP Diblock Copolymers via Supramolecular Assembly of Hydroxylated Gold Nanoparticles. Macromolecules, 2012, 45, 1553-1561.	4.8	85
44	Robust plasmonic sensors based on hybrid nanostructures with facile tunability. Journal of Materials Chemistry, 2012, 22, 13903.	6.7	18
45	Improved Performance of Protected Catecholic Polysiloxanes for Bioinspired Wet Adhesion to Surface Oxides. Journal of the American Chemical Society, 2012, 134, 20139-20145.	13.7	100
46	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	6.7	51
47	Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures. ACS Nano, 2012, 6, 2750-2757.	14.6	72
48	Supramolecular star polymers with compositional heterogeneity. Journal of Polymer Science Part A, 2012, 50, 1844-1850.	2.3	13
49	Effect of precursor chainâ€length on the formation and stability of poly(ethylene glycol)â€based supramolecular star polymers. Journal of Polymer Science Part A, 2012, 50, 2415-2420.	2.3	7
50	Synthesis of thermally stable Au-core/Pt-shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter, 2011, 7, 6255.	2.7	47
51	High-Fidelity Optofluidic On-Chip Sensors Using Well-Defined Gold Nanowell Crystals. Analytical Chemistry, 2011, 83, 9174-9180.	6.5	41
52	Acid-Functionalized SBA-15-Type Silica Catalysts for Carbohydrate Dehydration. ACS Catalysis, 2011, 1, 719-728.	11.2	184
53	Bicontinuous Block Copolymer Morphologies Produced by Interfacially Active, Thermally Stable Nanoparticles. Macromolecules, 2011, 44, 9366-9373.	4.8	44
54	Controlling the Orientation of Block Copolymer Thin Films using Thermally-Stable Gold Nanoparticles with Tuned Surface Chemistry. Macromolecules, 2011, 44, 9356-9365.	4.8	57

SE GYU JANG

#	Article	IF	CITATIONS
55	Controlled Supramolecular Assembly of Micelle-Like Gold Nanoparticles in PS- <i>b</i> -P2VP Diblock Copolymers via Hydrogen Bonding. Journal of the American Chemical Society, 2011, 133, 16986-16996.	13.7	132
56	Synthesis of Multifunctional Micrometer‣ized Particles with Magnetic, Amphiphilic, and Anisotropic Properties. Advanced Materials, 2011, 23, 2348-2352.	21.0	55
57	Photothermolysis of immobilized bacteria on gold nanograil arrays. Applied Physics Letters, 2011, 98, .	3.3	10
58	Facile synthesis of core–shell and Janus particles via 2-D dendritic growth of gold film. Journal of Colloid and Interface Science, 2010, 350, 387-395.	9.4	18
59	Perfectly Hydrophobic Surfaces with Patterned Nanoneedles of Controllable Features. Langmuir, 2010, 26, 5295-5299.	3.5	36
60	Gold "Nanograils―with Tunable Dipolar Multiple Plasmon Resonances. Advanced Materials, 2009, 21, 1726-1731.	21.0	61
61	Hierarchically Structured Colloids of Diblock Copolymers and Au Nanoparticles. Chemistry of Materials, 2009, 21, 3739-3741.	6.7	49
62	Nanoscopic Ordered Voids and Metal Caps by Controlled Trapping of Colloidal Particles at Polymeric Film Surfaces. Advanced Materials, 2008, 20, 4862-4867.	21.0	67
63	Thermoresponsive Hydrogel Photonic Crystals by Threeâ€Đimensional Holographic Lithography. Advanced Materials, 2008, 20, 3061-3065.	21.0	98
64	Metal nanograil arrays with tunable multiple dipolar plasmon modes in integrated optofluidic devices for ultrasensitive sensing of biomolecules. , 2008, , .		0
65	Creating Surfactant Nanoparticles for Block Copolymer Composites through Surface Chemistry. Langmuir, 2007, 23, 12693-12703.	3.5	182
66	Controlled Fabrication of Hollow Metal Pillar Arrays Using Colloidal Masks. Chemistry of Materials, 2006, 18, 6103-6105.	6.7	31
67	Nanoscopic Pd Line Arrays Using Nanocontact Printed Dendrimers. Langmuir, 2006, 22, 3326-3331.	3.5	19
68	Nanomachining by Colloidal Lithography. Small, 2006, 2, 458-475.	10.0	559
69	Colloidal lithography with crosslinkable particles: fabrication of hierarchical nanopore arrays. Chemical Communications, 2005, , 4107.	4.1	24
70	Two-Dimensional Polymer Nanopattern by Using Particle-Assisted Soft Lithography. Chemistry of Materials, 2004, 16, 3410-3413.	6.7	48
71	Colloidal Lithographic Nanopatterning via Reactive Ion Etching. Journal of the American Chemical Society, 2004, 126, 7019-7025.	13.7	183
72	Arrays of Binary and Ternary Particles and Their Replica Pores on Patterned Microchannels. Chemistry of Materials, 2003, 15, 4169-4171.	6.7	15