Se Gyu Jang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166587/publications.pdf

Version: 2024-02-01

72 papers 4,346

36 h-index 106344 65 g-index

75 all docs

 $\begin{array}{c} 75 \\ \text{docs citations} \end{array}$

75 times ranked 4999 citing authors

#	Article	IF	CITATIONS
1	Nanomachining by Colloidal Lithography. Small, 2006, 2, 458-475.	10.0	559
2	Striped, Ellipsoidal Particles by Controlled Assembly of Diblock Copolymers. Journal of the American Chemical Society, 2013, 135, 6649-6657.	13.7	220
3	A Facile Synthesis of Dynamic, Shapeâ€Changing Polymer Particles. Angewandte Chemie - International Edition, 2014, 53, 7018-7022.	13.8	200
4	Acid-Functionalized SBA-15-Type Silica Catalysts for Carbohydrate Dehydration. ACS Catalysis, 2011, 1, 719-728.	11.2	184
5	Colloidal Lithographic Nanopatterning via Reactive Ion Etching. Journal of the American Chemical Society, 2004, 126, 7019-7025.	13.7	183
6	Creating Surfactant Nanoparticles for Block Copolymer Composites through Surface Chemistry. Langmuir, 2007, 23, 12693-12703.	3.5	182
7	Multidimensional Design of Anisotropic Polymer Particles from Solventâ€Evaporative Emulsion. Advanced Functional Materials, 2018, 28, 1802961.	14.9	140
8	Controlled Supramolecular Assembly of Micelle-Like Gold Nanoparticles in PS- <i>b</i> -P2VP Diblock Copolymers via Hydrogen Bonding. Journal of the American Chemical Society, 2011, 133, 16986-16996.	13.7	132
9	Size-Controlled Nanoparticle-Guided Assembly of Block Copolymers for Convex Lens-Shaped Particles. Journal of the American Chemical Society, 2014, 136, 9982-9989.	13.7	132
10	Processable high internal phase Pickering emulsions using depletion attraction. Nature Communications, 2017, 8, 14305.	12.8	127
11	Improved Performance of Protected Catecholic Polysiloxanes for Bioinspired Wet Adhesion to Surface Oxides. Journal of the American Chemical Society, 2012, 134, 20139-20145.	13.7	100
12	Thermoresponsive Hydrogel Photonic Crystals by Threeâ€Dimensional Holographic Lithography. Advanced Materials, 2008, 20, 3061-3065.	21.0	98
13	Particles with Tunable Porosity and Morphology by Controlling Interfacial Instability in Block Copolymer Emulsions. ACS Nano, 2016, 10, 5243-5251.	14.6	92
14	Light-Responsive, Shape-Switchable Block Copolymer Particles. Journal of the American Chemical Society, 2019, 141, 15348-15355.	13.7	90
15	Morphology Evolution of PS- <i>b</i> -P2VP Diblock Copolymers via Supramolecular Assembly of Hydroxylated Gold Nanoparticles. Macromolecules, 2012, 45, 1553-1561.	4.8	85
16	Shape-Tunable Biphasic Janus Particles as pH-Responsive Switchable Surfactants. Macromolecules, 2017, 50, 9276-9285.	4.8	80
17	Gold-Decorated Block Copolymer Microspheres with Controlled Surface Nanostructures. ACS Nano, 2012, 6, 2750-2757.	14.6	72
18	Monodipserse Nanostructured Spheres of Block Copolymers and Nanoparticles via Cross-Flow Membrane Emulsification. Chemistry of Materials, 2015, 27, 6314-6321.	6.7	72

#	Article	lF	Citations
19	Engineering the Shape of Block Copolymer Particles by Surface-Modulated Graphene Quantum Dots. Chemistry of Materials, 2016, 28, 830-837.	6.7	71
20	Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles. Advanced Materials, 2017, 29, 1700608.	21.0	71
21	Nanoscopic Ordered Voids and Metal Caps by Controlled Trapping of Colloidal Particles at Polymeric Film Surfaces. Advanced Materials, 2008, 20, 4862-4867.	21.0	67
22	Characteristic correlation between liquid crystalline epoxy and alumina filler on thermal conducting properties. Composites Science and Technology, 2017, 141, 99-105.	7.8	67
23	Multicolor Emission of Hybrid Block Copolymer–Quantum Dot Microspheres by Controlled Spatial Isolation of Quantum Dots. Small, 2013, 9, 2667-2672.	10.0	65
24	Enhanced Thermal Conductivity of Liquid Crystalline Epoxy Resin using Controlled Linear Polymerization. ACS Macro Letters, 2018, 7, 1180-1185.	4.8	64
25	Gold "Nanograils―with Tunable Dipolar Multiple Plasmon Resonances. Advanced Materials, 2009, 21, 1726-1731.	21.0	61
26	Controlling the Orientation of Block Copolymer Thin Films using Thermally-Stable Gold Nanoparticles with Tuned Surface Chemistry. Macromolecules, 2011, 44, 9356-9365.	4.8	57
27	Synthesis of Multifunctional Micrometerâ€Sized Particles with Magnetic, Amphiphilic, and Anisotropic Properties. Advanced Materials, 2011, 23, 2348-2352.	21.0	55
28	Liquid crystalline epoxy resin with improved thermal conductivity by intermolecular dipole–dipole interactions. Journal of Polymer Science Part A, 2019, 57, 708-715.	2.3	52
29	Mesostructured Block Copolymer Nanoparticles: Versatile Templates for Hybrid Inorganic/Organic Nanostructures. Chemistry of Materials, 2012, 24, 4036-4042.	6.7	51
30	Hierarchically Structured Colloids of Diblock Copolymers and Au Nanoparticles. Chemistry of Materials, 2009, 21, 3739-3741.	6.7	49
31	Two-Dimensional Polymer Nanopattern by Using Particle-Assisted Soft Lithography. Chemistry of Materials, 2004, 16, 3410-3413.	6.7	48
32	Synthesis of thermally stable Au-core/Pt-shell nanoparticles and their segregation behavior in diblock copolymer mixtures. Soft Matter, 2011, 7, 6255.	2.7	47
33	Bicontinuous Block Copolymer Morphologies Produced by Interfacially Active, Thermally Stable Nanoparticles. Macromolecules, 2011, 44, 9366-9373.	4.8	44
34	High-Fidelity Optofluidic On-Chip Sensors Using Well-Defined Gold Nanowell Crystals. Analytical Chemistry, 2011, 83, 9174-9180.	6. 5	41
35	Highly thermal conductive resins formed from wide-temperature-range eutectic mixtures of liquid crystalline epoxies bearing diglycidyl moieties at the side positions. Polymer Chemistry, 2017, 8, 2806-2814.	3.9	40
36	High-performance, recyclable ultrafiltration membranes from P4VP-assisted dispersion of flame-resistive boron nitride nanotubes. Journal of Membrane Science, 2018, 551, 172-179.	8.2	38

#	Article	IF	Citations
37	Perfectly Hydrophobic Surfaces with Patterned Nanoneedles of Controllable Features. Langmuir, 2010, 26, 5295-5299.	3.5	36
38	Mechanistic Study on the Shape Transition of Block Copolymer Particles Driven by Length-Controlled Nanorod Surfactants. Chemistry of Materials, 2018, 30, 8669-8678.	6.7	36
39	Chemically resistant and thermally stable quantum dots prepared by shell encapsulation with cross-linkable block copolymer ligands. NPG Asia Materials, 2020, 12, .	7.9	36
40	Surface Intaglio Nanostructures on Microspheres of Gold-Cored Block Copolymer Spheres. Chemistry of Materials, 2013, 25, 4416-4422.	6.7	35
41	Controlled Fabrication of Hollow Metal Pillar Arrays Using Colloidal Masks. Chemistry of Materials, 2006, 18, 6103-6105.	6.7	31
42	Entropy-Driven Assembly of Nanoparticles within Emulsion-Evaporative Block Copolymer Particles: Crusted, Seeded, and Alternate-Layered Onions. Chemistry of Materials, 2020, 32, 7036-7043.	6.7	26
43	Single- and double-walled boron nitride nanotubes: Controlled synthesis and application for water purification. Scientific Reports, 2020, 10, 7416.	3.3	25
44	Colloidal lithography with crosslinkable particles: fabrication of hierarchical nanopore arrays. Chemical Communications, 2005, , 4107.	4.1	24
45	Interfacial Instability-Driven Morphological Transition of Prolate Block Copolymer Particles: Striped Football, Larva to Sphere. Macromolecules, 2020, 53, 7198-7206.	4.8	24
46	Tailoring block copolymer and polymer blend morphology using nanoparticle surfactants. Journal of Polymer Science Part A, 2016, 54, 228-237.	2.3	22
47	Boron Nitride Nanotube-Based Separator for High-Performance Lithium-Sulfur Batteries. Nanomaterials, 2022, 12, 11.	4.1	21
48	Nanoscopic Pd Line Arrays Using Nanocontact Printed Dendrimers. Langmuir, 2006, 22, 3326-3331.	3.5	19
49	Dual growth mode of boron nitride nanotubes in high temperature pressure laser ablation. Scientific Reports, 2019, 9, 15674.	3.3	19
50	Diacetylene-Containing Dual-Functional Liquid Crystal Epoxy Resin: Strategic Phase Control for Topochemical Polymerization of Diacetylenes and Thermal Conductivity Enhancement. Macromolecules, 2022, 55, 4402-4410.	4.8	19
51	Facile synthesis of core–shell and Janus particles via 2-D dendritic growth of gold film. Journal of Colloid and Interface Science, 2010, 350, 387-395.	9.4	18
52	Robust plasmonic sensors based on hybrid nanostructures with facile tunability. Journal of Materials Chemistry, 2012, 22, 13903.	6.7	18
53	Performance and economic analysis of commercial-scale coal-fired power plant with post-combustion CO2 capture. Korean Journal of Chemical Engineering, 2015, 32, 800-807.	2.7	16
54	Fluorescence Switchable Block Copolymer Particles with Doubly Alternate‣ayered Nanoparticle Arrays. Small, 2021, 17, e2101222.	10.0	16

#	Article	IF	CITATIONS
55	Purification of boron nitride nanotubes by functionalization and removal of poly(4-vinylpyridine). Applied Surface Science, 2021, 555, 149722.	6.1	16
56	Arrays of Binary and Ternary Particles and Their Replica Pores on Patterned Microchannels. Chemistry of Materials, 2003, 15, 4169-4171.	6.7	15
57	Light-Active, Reversibly Shape-Shifting Block Copolymer Particles Using Photo-switchable Au Nanoparticle Surfactants. Chemistry of Materials, 2021, 33, 9769-9779.	6.7	14
58	Supramolecular star polymers with compositional heterogeneity. Journal of Polymer Science Part A, 2012, 50, 1844-1850.	2.3	13
59	Photothermolysis of immobilized bacteria on gold nanograil arrays. Applied Physics Letters, 2011, 98, .	3.3	10
60	Nanoparticles as structureâ€directing agents for controlling the orientation of block copolymer microdomain in thin films. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 118-127.	2.1	10
61	Nanostructured Particles: Stimuliâ€Responsive, Shapeâ€Transforming Nanostructured Particles (Adv.) Tj ETQq1 1	. 0,78431 21.0	4 rgBT /Over
62	Effect of Polymeric <i>In Situ</i> Stabilizers on Dispersion Homogeneity of Nanofillers and Thermal Conductivity Enhancement of Composites. Langmuir, 2020, 36, 5563-5570.	3.5	9
63	Insight into BN Impurity Formation during Boron Nitride Nanotube Synthesis by High-Temperature Plasma. ACS Omega, 2021, 6, 27418-27429.	3.5	9
64	Effect of precursor chainâ€length on the formation and stability of poly(ethylene glycol)â€based supramolecular star polymers. Journal of Polymer Science Part A, 2012, 50, 2415-2420.	2.3	7
65	Subnanometer Thick Carbon-Layer-Encapsulated Silver Nanoparticles Selectively Neutralizing Human Cancer Cells and Pathogens through Controlled Release of Ag ⁺ Ions. ACS Applied Nano Materials, 2021, 4, 7295-7308.	5.0	7
66	Test Bed Studies with Highly Efficient Amine CO2Solvent (KoSol-4). Korean Chemical Engineering Research, 2013, 51, 267-271.	0.2	7
67	Isolation and Crystal Structure Determination of Piperazine Dicarbamate Obtained from a Direct Reaction between Piperazine and Carbon Dioxide in Methanol. Bulletin of the Korean Chemical Society, 2016, 37, 1854-1857.	1.9	6
68	Boron nitride nanotubes as a heat sinking and stress-relaxation layer for high performance light-emitting diodes. Nanoscale, 2017, 9, 16223-16231.	5.6	6
69	Synthesis and characterization of new diamines containing rigid aromatic ester units as curing agent for high performance epoxy resin. Macromolecular Research, 2017, 25, 763-766.	2.4	3
70	Development of Highly Thermal Conductive Liquid Crystalline Epoxy Resins for High Thermal Dissipation Composites. Composites Research, 2017, 30, 1-6.	0.1	1
71	Metal nanograil arrays with tunable multiple dipolar plasmon modes in integrated optofluidic devices for ultrasensitive sensing of biomolecules. , 2008, , .		O
72	Titelbild: A Facile Synthesis of Dynamic, Shape-Changing Polymer Particles (Angew. Chem. 27/2014). Angewandte Chemie, 2014, 126, 6947-6947.	2.0	0