Erik Blaser

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166223/publications.pdf Version: 2024-02-01

FDIK RIASED

#	Article	IF	CITATIONS
1	Proactive interference and the development of working memory. Wiley Interdisciplinary Reviews: Cognitive Science, 2022, 13, e1593.	1.4	2
2	Seeing a Page in a Flipbook: Shorter Visual Temporal Integration Windows in 2â€Yearâ€Old Toddlers with Autism Spectrum Disorder. Autism Research, 2021, 14, 946-958.	2.1	6
3	The ups and downs of sensory eye balance: Monocular deprivation has a biphasic effect on interocular dominance. Vision Research, 2021, 183, 53-60.	0.7	8
4	The development of peak alpha frequency from infancy to adolescence and its role in visual temporal processing: A meta-analysis. Journal of Vision, 2021, 21, 2832.	0.1	0
5	Coding of featural information in visual working memory in 2.5-year-old toddlers. Cognitive Development, 2020, 55, 100892.	0.7	5
6	Putting Effort Into Infant Cognition. Current Directions in Psychological Science, 2020, 29, 180-185.	2.8	7
7	Visual temporal integration windows are longer in infants. Journal of Vision, 2020, 20, 1639.	0.1	1
8	Two-year-olds succeed at MIT: Multiple identity tracking in 20- and 25-month-old infants. Journal of Experimental Child Psychology, 2019, 187, 104649.	0.7	10
9	Visual temporal integration windows are adult-like in 5- to 7-year-old children. Journal of Vision, 2019, 19, 5.	0.1	10
10	Focused attention predicts visual working memory performance in 13-month-old infants: A pupillometric study. Developmental Cognitive Neuroscience, 2019, 36, 100616.	1.9	25
11	Successful attentional set-shifting in 2-year-olds with and without Autism Spectrum Disorder. PLoS ONE, 2019, 14, e0213903.	1.1	7
12	Visual temporal integration windows in 2-year-old toddlers with and without ASD. Journal of Vision, 2019, 19, 158b.	0.1	0
13	Rules Infants Look By: Testing the Assumption of Transitivity in Visual Salience. Infancy, 2018, 23, 156-172.	0.9	2
14	Assessing the kaleidoscope of monocular deprivation effects. Journal of Vision, 2018, 18, 14.	0.1	37
15	Visual temporal integration windows are adult-like in typically developing 5-7-year-old children Journal of Vision, 2018, 18, 781.	0.1	1
16	Preschoolers have better longâ€ŧerm memory for rhyming text than adults. Developmental Science, 2017, 20, e12398.	1.3	7
17	A not-so-narrow spotlight: Infants can encode information about objects into VSTM that were not fixated. Journal of Vision, 2017, 17, 447.	0.1	0
18	The Mechanisms Underlying the ASD Advantage in Visual Search. Journal of Autism and Developmental Disorders, 2016, 46, 1513-1527.	1.7	88

Erik Blaser

#	Article	IF	CITATIONS
19	Delayed Match Retrieval: a novel anticipationâ€based visual working memory paradigm. Developmental Science, 2016, 19, 892-900.	1.3	21
20	Ocular dominance plasticity tested with non-contrast based (kaleidoscopic) monocular deprivation. Journal of Vision, 2016, 16, 432.	0.1	0
21	Examining attention allocation during a proceduralized visual task. Journal of Vision, 2016, 16, 903.	0.1	0
22	Accounting for cognitive effort in a visual working memory task in 13- and 15-month old infants. Journal of Vision, 2016, 16, 67.	0.1	0
23	Pupillometry Reveals a Mechanism for the Autism Spectrum Disorder (ASD) Advantage in Visual Tasks. Scientific Reports, 2014, 4, 4301.	1.6	90
24	Red to Green or Fast to Slow? Infants' Visual Working Memory for "Just Salient Differences― Child Development, 2013, 84, 1855-1862.	1.7	12
25	Toddlers with Autism Spectrum Disorder are more successful at visual search than typically developing toddlers. Developmental Science, 2011, 14, 980-988.	1.3	109
26	Infants Get Five Stars on Iconic Memory Tests. Psychological Science, 2010, 21, 1643-1645.	1.8	14
27	Maximal motion aftereffects in spite of diverted awareness. Vision Research, 2009, 49, 1174-1181.	0.7	9
28	How to Compare Apples and Oranges: Infants' Object Identification Tested With Equally Salient Shape, Luminance, and Color Changes. Infancy, 2009, 14, 222-243.	0.9	19
29	When is Motion â€~Motion'?. Perception, 2008, 37, 624-627.	0.5	14
30	Binding of motion and colour is early and automatic. European Journal of Neuroscience, 2005, 21, 2040-2044.	1.2	29
31	Object-based cross-feature attentional modulation from color to motion. Vision Research, 2004, 44, 1437-1443.	0.7	29
32	The conjunction of feature and depth information. Vision Research, 2002, 42, 273-279.	0.7	7
33	Motion integration during motion aftereffects. Trends in Cognitive Sciences, 2002, 6, 157-161.	4.0	18
34	Tracking an object through feature space. Nature, 2000, 408, 196-199.	13.7	268
35	Color-specific depth mechanisms revealed by a color-contingent depth aftereffect. Vision Research, 2000, 40, 359-364.	0.7	15
36	The accuracy and precision of saccades to small and large targets. Vision Research, 1995, 35, 1741-1754.	0.7	164

		ERIK DLASER		
#	Article	IF	CITATIONS	
37	The role of attention in the programming of saccades. Vision Research, 1995, 35, 1897-1916.	0.7	1,163	