Andre Ferraz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166138/publications.pdf

Version: 2024-02-01

109137 161609 3,695 126 35 54 h-index citations g-index papers 128 128 128 3341 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Overexpression of a Sugarcane BAHD Acyltransferase Alters Hydroxycinnamate Content in Maize Cell Wall. Frontiers in Plant Science, 2021, 12, 626168.	1.7	11
2	High-solid enzymatic hydrolysis of sugarcane bagasse and ethanol production in repeated batch process using column reactors. 3 Biotech, 2021, 11, 432.	1.1	3
3	Biomass composition of two new energy cane cultivars compared with their ancestral Saccharum spontaneum during internode development. Biomass and Bioenergy, 2020, 141, 105696.	2.9	5
4	The Secretome of Phanerochaete chrysosporium and Trametes versicolor Grown in Microcrystalline Cellulose and Use of the Enzymes for Hydrolysis of Lignocellulosic Materials. Frontiers in Bioengineering and Biotechnology, 2020, 8, 826.	2.0	18
5	EgPHI-1, a PHOSPHATE-INDUCED-1 gene from Eucalyptus globulus, is involved in shoot growth, xylem fiber length and secondary cell wall properties. Planta, 2020, 252, 45.	1.6	6
6	Differentiation of Tracheary Elements in Sugarcane Suspension Cells Involves Changes in Secondary Wall Deposition and Extensive Transcriptional Reprogramming. Frontiers in Plant Science, 2020, 11, 617020.	1.7	10
7	Enzyme-aided xylan extraction from alkaline-sulfite pretreated sugarcane bagasse and its incorporation onto eucalyptus kraft pulps. Carbohydrate Research, 2020, 492, 108003.	1.1	8
8	Techno-economic assessment of bioenergy and biofuel production in integrated sugarcane biorefinery: Identification of technological bottlenecks and economic feasibility of dilute acid pretreatment. Energy, 2020, 199, 117422.	4.5	41
9	The secretome of two representative lignocellulose-decay basidiomycetes growing on sugarcane bagasse solid-state cultures. Enzyme and Microbial Technology, 2019, 130, 109370.	1.6	15
10	Sucrose content, lignocellulose accumulation and in vitro digestibility of sugarcane internodes depicted in relation to internode maturation stage and Saccharum genotypes. Industrial Crops and Products, 2019, 139, 111543.	2.5	26
11	An innovative concept for industrial sugarcane processing enhances polysaccharide utilization in first- and second-generation integrated biorefineries. Industrial Crops and Products, 2019, 141, 111801.	2.5	1
12	On-site produced and commercially available alkali-active xylanases compared for xylan extraction from sugarcane bagasse. Biocatalysis and Agricultural Biotechnology, 2019, 18, 101081.	1.5	5
13	Functional characterization and comparative analysis of two heterologous endoglucanases from diverging subfamilies of glycosyl hydrolase family 45. Enzyme and Microbial Technology, 2019, 120, 23-35.	1.6	22
14	Comparative evaluation of acid and alkaline sulfite pretreatments for enzymatic saccharification of bagasses from three different sugarcane hybrids. Biotechnology Progress, 2018, 34, 944-951.	1.3	6
15	Role of hemicellulose removal during dilute acid pretreatment on the cellulose accessibility and enzymatic hydrolysis of compositionally diverse sugarcane hybrids. Industrial Crops and Products, 2018, 111, 722-730.	2.5	68
16	Alkaline sulfite pretreatment for integrated first and second generation ethanol production: A techno-economic assessment of sugarcane hybrids. Biomass and Bioenergy, 2018, 119, 314-321.	2.9	13
17	Fate of p-hydroxycinnamates and structural characteristics of residual hemicelluloses and lignin during alkaline-sulfite chemithermomechanical pretreatment of sugarcane bagasse. Biotechnology for Biofuels, 2018, 11, 153.	6.2	27
18	A new bioreactor design for culturing basidiomycetes: Mycelial biomass production in submerged cultures of Ceriporiopsis subvermispora. Chemical Engineering Science, 2017, 170, 670-676.	1.9	17

#	Article	IF	CITATIONS
19	Techno-economic impacts of varied compositional profiles of sugarcane experimental hybrids on a biorefinery producing sugar, ethanol and electricity. Chemical Engineering Research and Design, 2017, 125, 72-78.	2.7	20
20	Biological pretreatment of sugarcane bagasse with basidiomycetes producing varied patterns of biodegradation. Bioresource Technology, 2017, 225, 17-22.	4.8	89
21	Limitation of cellulose accessibility and unproductive binding of cellulases by pretreated sugarcane bagasse lignin. Biotechnology for Biofuels, 2017, 10, 176.	6.2	95
22	Xylan extraction from pretreated sugarcane bagasse using alkaline and enzymatic approaches. Biotechnology for Biofuels, 2017, 10, 296.	6.2	65
23	Manganese peroxidase and biomimetic systems applied to <i>in vitro</i> lignin degradation in <i>Eucalyptus grandis</i> milled wood and kraft pulps. Journal of Chemical Technology and Biotechnology, 2016, 91, 1422-1430.	1.6	9
24	Exploring glycoside hydrolases and accessory proteins from wood decay fungi to enhance sugarcane bagasse saccharification. Biotechnology for Biofuels, 2016, 9, 110.	6.2	47
25	Tissue-specific distribution of hemicelluloses in six different sugarcane hybrids as related to cell wall recalcitrance. Biotechnology for Biofuels, 2016, 9, 99.	6.2	51
26	Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse. Bioprocess and Biosystems Engineering, 2016, 39, 441-448.	1.7	41
27	Sugarcane hybrids with original low lignin contents and high field productivity are useful toÂreach high glucose yields from bagasse. Biomass and Bioenergy, 2015, 75, 65-74.	2.9	20
28	Chemithermomechanical and kraft pulping of <i>Pinus radiata</i> wood chips after the hydrothermal extraction of hemicelluloses. Holzforschung, 2015, 69, 33-40.	0.9	11
29	Covalent immobilization of laccase in green coconut fiber and use in clarification of apple juice. Process Biochemistry, 2015, 50, 417-423.	1.8	97
30	Topochemical characterization of sugar cane pretreated with alkaline sulfite. Industrial Crops and Products, 2015, 69, 60-67.	2.5	24
31	Mapping of Cell Wall Components in Lignified Biomass as a Tool to Understand Recalcitrance. , 2014, , 173-202.		6
32	Effects of enzymatic removal of plant cell wall acylation (acetylation, p-coumaroylation, and) Tj ETQq0 0 0 rgBT /0 fractions. Biotechnology for Biofuels, 2014, 7, 153.	Overlock 1 6.2	0 Tf 50 227 ⁻ 38
33	Metabolite secretion, Fe3+-reducing activity and wood degradation by the white-rot fungus Trametes versicolor ATCC 20869. Fungal Biology, 2014, 118, 935-942.	1.1	14
34	Lignin chemistry and topochemistry during kraft delignification of <i>Eucalyptus globulus</i> genotypes with contrasting pulpwood characteristics. Holzforschung, 2014, 68, 623-629.	0.9	13
35	Evaluation of a simple alkaline pretreatment for screening of sugarcane hybrids according to their in vitro digestibility. Industrial Crops and Products, 2013, 51, 390-395.	2.5	11
36	The effects of lignin removal and drying on the porosity and enzymatic hydrolysis of sugarcane bagasse. Cellulose, 2013, 20, 3165-3177.	2.4	39

3

#	Article	IF	CITATIONS
37	Extracellular activities and wood component losses during Pinus taeda biodegradation by the brown-rot fungus Gloeophyllum trabeum. International Biodeterioration and Biodegradation, 2013, 82, 187-191.	1.9	30
38	The enzymatic recalcitrance of internodes of sugar cane hybrids with contrasting lignin contents. Industrial Crops and Products, 2013, 51, 202-211.	2.5	43
39	Enzymatic digestion of alkalineâ€sulfite pretreated sugar cane bagasse and its correlation with the chemical and structural changes occurring during the pretreatment step. Biotechnology Progress, 2013, 29, 890-895.	1.3	20
40	Enhancement of cellulose hydrolysis in sugarcane bagasse by the selective removal of lignin with sodium chlorite. Applied Energy, 2013, 102, 399-402.	5.1	128
41	Effect of aqueous extracts from Ceriporiopsis subvermispora-biotreated wood on the decolorization of Azure B by Fenton-like reactions. International Biodeterioration and Biodegradation, 2012, 74, 61-66.	1.9	18
42	Effects of exogenous calcium or oxalic acid on Pinus taeda treatment with the white-rot fungus Ceriporiopsis subvermispora. International Biodeterioration and Biodegradation, 2012, 72, 88-93.	1.9	10
43	Alkaline sulfite/anthraquinone pretreatment followed by disk refining of <i>Pinus radiata</i> and <i>Pinus caribaea</i> wood chips for biochemical ethanol production. Journal of Chemical Technology and Biotechnology, 2012, 87, 651-657.	1.6	14
44	Uso de aditivos na biodegradação de madeira pelo fungo Ceriporiopsis subvermispora: efeito na peroxidação de lipÃdios dependente de manganês-peroxidase. Quimica Nova, 2012, 35, 1107-1111.	0.3	3
45	Chemical composition and enzymatic digestibility of sugarcane clones selected for varied lignin content. Biotechnology for Biofuels, 2011, 4, 55.	6.2	144
46	Topochemistry, Porosity and Chemical Composition Affecting Enzymatic Hydrolysis of Lignocellulosic Materials., 2011,, 53-72.		8
47	Mecanismos envolvidos na biodegradação de materiais lignocelulósicos e aplicaçÃμes tecnológicas correlatas. Quimica Nova, 2011, , .	0.3	9
48	A study on the pretreatment of a sugarcane bagasse sample with dilute sulfuric acid. Journal of Industrial Microbiology and Biotechnology, 2011, 38, 1467-1475.	1.4	146
49	Topochemical distribution of lignin and hydroxycinnamic acids in sugar-cane cell walls and its correlation with the enzymatic hydrolysis of polysaccharides. Biotechnology for Biofuels, 2011, 4, 7.	6.2	83
50	Enzymatic hydrolysis of chemithermomechanically pretreated sugarcane bagasse and samples with reduced initial lignin content. Biotechnology Progress, 2011, 27, 395-401.	1.3	49
51	Linoleic acid peroxidation initiated by Fe3+-reducing compounds recovered from Eucalyptus grandis biotreated with Ceriporiopsis subvermispora. International Biodeterioration and Biodegradation, 2011, 65, 164-171.	1.9	5
52	Behavior of Ceriporiopsis subvermispora during Pinus taeda biotreatment in soybean-oil-amended cultures. International Biodeterioration and Biodegradation, 2010, 64, 588-593.	1.9	6
53	Linoleic acid peroxidation and lignin degradation by enzymes produced by Ceriporiopsis subvermispora grown on wood or in submerged liquid cultures. Enzyme and Microbial Technology, 2010, 46, 262-267.	1.6	21
54	Uso de carvão ativado e resina de troca iônica para limpeza e concentração de enzimas em extratos de madeira biodegradada. Acta Scientiarum - Technology, 2010, 32, .	0.4	0

#	Article	IF	CITATIONS
55	Uma visão sobre a estrutura, composição e biodegradação da madeira. Quimica Nova, 2009, 32, 2191-2	21950.3	22
56	Laboratory and mill scale evaluation of biopulping of <i>Eucalyptus grandis</i> Hill ex Maiden with <i>Phanerochaete chrysosporium</i> RP-78 under non-aseptic conditions. Holzforschung, 2009, 63, 259-263.	0.9	24
57	High-yield kraft pulping of <i>Eucalyptus grandis</i> Hill ex Maiden biotreated by <i>Ceriporiopsis subvermispora</i> under two different culture conditions. Holzforschung, 2009, 63, 408-413.	0.9	16
58	Technological advances and mechanistic basis for fungal biopulping. Enzyme and Microbial Technology, 2008, 43, 178-185.	1.6	82
59	Clean-up and concentration of manganese peroxidases recovered during the biodegradation of Eucalyptus grandis by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 2008, 43, 193-198.	1.6	5
60	Relevance of extractives and wood transformation products on the biodegradation of Pinus taeda by Ceriporiopsis subvermispora. International Biodeterioration and Biodegradation, 2008, 61, 182-188.	1.9	17
61	Alkaline-sulfite chemithermomechanical pulping of Eucalyptus grandis biotreated by Ceriporiopsis subvermispora under varied culture conditions. Holzforschung, 2008, 62, .	0.9	10
62	Evaluation of Eucalyptus grandis Hill ex Maiden biopulping with Ceriporiopsis subvermispora under non-aseptic conditions. Holzforschung, 2008, 62, 1-7.	0.9	19
63	Estimation of Hexenuronic Acids and Kappa Number in Kraft Pulps of <i>Eucalyptus Globulus</i> by Fourier Transform near Infrared Spectroscopy and Multivariate Analysis. Journal of Near Infrared Spectroscopy, 2008, 16, 121-128.	0.8	7
64	Fe3+- and Cu2+-reduction by phenol derivatives associated with Azure B degradation in Fenton-like reactions. Chemosphere, 2007, 66, 947-954.	4.2	81
65	Mecanismo e aplicações da reação de fenton assistida por compostos fenólicos redutores de ferro. Quimica Nova, 2007, 30, 623-628.	0.3	58
66	Enzyme production and chemical alterations of Eucalyptus grandis wood during biodegradation by Ceriporiopsis subvermispora in cultures supplemented with Mn2+, corn steep liquor and glucose. Enzyme and Microbial Technology, 2007, 40, 645-652.	1.6	32
67	Enzymes produced by Ganoderma australe growing on wood and in submerged cultures. World Journal of Microbiology and Biotechnology, 2007, 23, 429-434.	1.7	17
68	Thiobarbituric acid reactive substances, Fe3+reduction and enzymatic activities in cultures ofGanoderma australegrowing onDrimys winteriwood. FEMS Microbiology Letters, 2006, 260, 112-118.	0.7	15
69	Enzymatic properties of two \hat{l}^2 -glucosidases from Ceriporiopsis subvermispora produced in biopulping conditions. Journal of Applied Microbiology, 2006, 101, 480-486.	1.4	35
70	Characterization of hemicellulases and cellulases produced by Ceriporiopsis subvermispora grown on wood under biopulping conditions. Enzyme and Microbial Technology, 2006, 38, 436-442.	1.6	43
71	Oxalic acid, Fe3+-reduction activity and oxidative enzymes detected in culture extracts recovered from Pinus taeda wood chips biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 2006, 38, 873-878.	1.6	49
72	Influence of forest soil on biodegradation of Drimys winteri by Ganoderma australe. International Biodeterioration and Biodegradation, 2006, 57, 174-178.	1.9	6

#	Article	lF	CITATIONS
73	Kraft pulping of Eucalyptus nitens wood chips biotreated by Ceriporiopsis subvermispora. Journal of Chemical Technology and Biotechnology, 2006, 81, 608-613.	1.6	17
74	Purification and properties of a xylanase from Ceriporiopsis subvermisporacultivated on Pinus taeda. FEMS Microbiology Letters, 2005, 253, 267-272.	0.7	18
75	Bioâ€Chemimechanical Pulps fromEucalyptus grandis: Strength Properties, Bleaching, and Brightness Stability. Journal of Wood Chemistry and Technology, 2005, 25, 203-216.	0.9	14
76	Nearâ€Infrared Spectra and Chemical Characteristics ofPinus taeda(Loblolly Pine) Wood Chips Biotreated by the Whiteâ€Rot FungusCeriporiopsis subvermispora. Journal of Wood Chemistry and Technology, 2005, 24, 99-113.	0.9	13
77	Structural Characterization of Lignin during Pinus taeda Wood Treatment with Ceriporiopsis subvermispora. Applied and Environmental Microbiology, 2004, 70, 4073-4078.	1.4	97
78	Cellular UV-microspectrophotometric investigations on pine wood (Pinus taeda and Pinus elliottii) delignification during biopulping with Ceriporiopsis subvermispora (Pil�t) Gilbn. & Ryv. and alkaline sulfite/anthraquinone treatment. Wood Science and Technology, 2004, 38, 567-575.	1.4	14
79	Alkaline sulfite/anthraquinone pulping of pine wood chips biotreated withCeriporiopsis subvermispora. Journal of Chemical Technology and Biotechnology, 2004, 79, 584-589.	1.6	15
80	Extraction and determination of enzymes produced by Ceriporiopsis subvermispora during biopulping of Pinus taeda wood chips. Enzyme and Microbial Technology, 2004, 34, 228-234.	1.6	88
81	Estimation of Solubility Effect on the Herbicide Controlled-Release Kinetics from Lignin-Based Formulations. Applied Biochemistry and Biotechnology, 2003, 108, 913-920.	1.4	9
82	Wood biodegradation and enzyme production by Ceriporiopsis subvermispora during solid-state fermentation of Eucalyptus grandis. Enzyme and Microbial Technology, 2003, 32, 59-65.	1.6	92
83	Molecular weight distribution of wood components extracted from Pinus taeda biotreated by Ceriporiopsis subvermispora. Enzyme and Microbial Technology, 2003, 33, 12-18.	1.6	68
84	Iron-responsive genes of Phanerochaete chrysosporium isolated by differential display reverse transcription polymerase chain reaction. Environmental Microbiology, 2003, 5, 777-786.	1.8	11
85	Role of Metals in Wood Biodegradation. ACS Symposium Series, 2003, , 154-174.	0.5	14
86	Estimation of Solubility Effect on the Herbicide Controlled-Release Kinetics from Lignin-Based Formulations., 2003,, 913-919.		2
87	Characterization of the Residual Lignins in Pinus taeda Biodegraded by Ceriporiopsis subvermispora by Using in situ CuO Oxidation and DFRC Methods. Holzforschung, 2002, 56, 157-160.	0.9	40
88	Attempts to correlate biopulping benefits with changes in the chemical structure of wood components and enzymes produced during the wood biotreatment with Ceriporiopsis subvermispora. Progress in Biotechnology, 2002, , 73-80.	0.2	11
89	Iron-regulated proteins inPhanerochaete chrysosporium andLentinula edodes: Differential analysis by sodium dodecyl sulfate polyacrylamide gel electrophoresis and two-dimensional polyacrylamide gel electrophoresis profiles. Electrophoresis, 2002, 23, 655-661.	1.3	31
90	Delignification of Pinus taedawood chips treated with Ceriporiopsis subvermisporator preparing high-yield kraft pulps. Journal of Chemical Technology and Biotechnology, 2002, 77, 411-418.	1.6	47

#	Article	IF	CITATIONS
91	Modeling of 2,4-Dichlorophenoxyacetic Acid Controlled-Release Kinetics from Lignin-Based Formulations. Applied Biochemistry and Biotechnology, 2002, 98-100, 101-108.	1.4	9
92	Modeling of 2,4-Dichlorophenoxyacetic Acid Controlled-Release Kinetics from Lignin-Based Formulations. , 2002, , 101-107.		0
93	Molecular weight distribution and structural characteristics of polymers obtained from acid soluble lignin treated by oxidative enzymes. Enzyme and Microbial Technology, 2001, 28, 308-313.	1.6	12
94	Hydrolytic and oxidative enzymes produced by white- and brown-rot fungi during Eucalyptus grandis decay in solid medium. Enzyme and Microbial Technology, 2001, 29, 386-391.	1.6	89
95	Occurrence of iron-reducing compounds in biodelignified "palo podrido―wood samples. International Biodeterioration and Biodegradation, 2001, 47, 203-208.	1.9	20
96	Biodegradation of Pinus radiata softwood by white- and brown-rot fungi. World Journal of Microbiology and Biotechnology, 2001, 17, 31-34.	1.7	39
97	Title is missing!. World Journal of Microbiology and Biotechnology, 2001, 17, 577-581.	1.7	12
98	Mathematical Modeling of Controlled-Release Kinetics of Herbicides in a Dynamic-Water-Bath System. Applied Biochemistry and Biotechnology, 2001, 91-93, 563-574.	1.4	4
99	Mathematical Modeling of Controlled-Release Kinetics of Herbicides in a Dynamic-Water-Bath System. , 2001, , 563-574.		0
100	Organosolv delignification of white- and brown-rottedEucalyptus grandis hardwood. Journal of Chemical Technology and Biotechnology, 2000, 75, 18-24.	1.6	48
101	Formic acid/acetone-organosolv pulping of white-rottedPinus radiata softwood. Journal of Chemical Technology and Biotechnology, 2000, 75, 1190-1196.	1.6	35
102	Polymerization of lignin fragments contained in a model effluent by polyphenoloxidases and horseradish peroxidase/hydrogen peroxide systema ⁻ †. Enzyme and Microbial Technology, 2000, 26, 315-323.	1.6	37
103	Estimating the chemical composition of biodegraded pine and eucalyptus wood by DRIFT spectroscopy and multivariate analysis. Bioresource Technology, 2000, 74, 201-212.	4.8	191
104	Title is missing!. World Journal of Microbiology and Biotechnology, 2000, 16, 641-645.	1.7	33
105	Mathematical Modeling of Controlled-Release Systems of Herbicides Using Lignins as Matrices. Applied Biochemistry and Biotechnology, 2000, 84-86, 595-616.	1.4	20
106	Mathematical Modeling of Controlled-Release Systems of Herbicides Using Lignins as Matrices. , 2000, , 595-615.		0
107	Development of Mathematical Models for Describing Organosolv Pulping Kinetics of Fungally Pretreated Wood Samples. Journal of Wood Chemistry and Technology, 1999, 19, 99-114.	0.9	4
108	Identifying the origin of lignins and monitoring their structural changes by means of FTIR-PCA and -SIMCA. Bioresource Technology, 1999, 68, 29-34.	4.8	29

#	Article	lF	Citations
109	Characterization of Residual Lignin after SO2-Catalyzed Steam Explosion and Enzymatic Hydrolysis of Eucalyptus viminalis Wood Chips. Journal of Agricultural and Food Chemistry, 1999, 47, 2295-2302.	2.4	21
110	Title is missing!. World Journal of Microbiology and Biotechnology, 1998, 14, 487-490.	1.7	21
111	Response to Ozonation of Different Cellulose Pulp Bleaching Effluents. Environmental Technology (United Kingdom), 1998, 19, 75-81.	1.2	7
112	Controlled Release of 2,4-D from Granule Matrix Formulations Based on Six Lignins. Journal of Agricultural and Food Chemistry, 1997, 45, 1001-1005.	2.4	38
113	Biodegradation of acidolysis lignins from Chilean hardwoods by the ascomycete Chrysonilia sitophila. World Journal of Microbiology and Biotechnology, 1997, 13, 545-548.	1.7	3
114	Lignin biodegradation by the ascomyceteChrysonilia sitophila. Applied Biochemistry and Biotechnology, 1997, 62, 233-242.	1.4	44
115	Lignin degradation during softwood decaying by the ascomyceteChrysonilia sitophila. Biodegradation, 1995, 6, 265-274.	1.5	20
116	Phenoloxidases and hydrolases from Pycnoporus sanguineus (UEC-2050 strain): applications. Journal of Biotechnology, 1993, 29, 219-228.	1.9	25
117	Decay ofParkia oppositifoliain Amazonia byPycnoporus sanguineusand Potential Use for Effluent Decolorization. Holzforschung, 1993, 47, 361-368.	0.9	6
118	Amazonian lignocellulosic materials-i fungal screening from decayed laurel and cedar trees. Applied Biochemistry and Biotechnology, 1992, 37, 33-41.	1.4	7
119	Softwood biodegradation by an ascomycete Chrysonilia sitophila (TFB 27441 strain). Letters in Applied Microbiology, 1991, 13, 82-86.	1.0	20
120	The effect of carbon sources on the single cell proteins and extracellular enzymes production by Chrysonilia sitophila (TFB 27441 strain). Applied Biochemistry and Biotechnology, 1991, 27, 267-276.	1.4	1
121	Production of microbial protein from forest products. Bioresource Technology, 1990, 23, 155-162.	0.3	6
122	Chrysonila sitophila (TFB-27441): A hyperlignolytic strain. Biotechnology Letters, 1987, 9, 357-360.	1.1	16
123	Anatomic and Ultrastructural Characteristics of Different Regions of Sugar Cane Internodes Which Affect Their Response to Alkaline-Sulfite Pretreatment and Material Recalcitrance. Energy & Camp; Fuels, 0, , .	2.5	1
124	SIMULAÇÃO E ANÃŁISE ECONÔMICA DE BIORREFINARIAS INTEGRADAS 1G2G EMPREGANDO PRÉ-TRATAME ÃCIDO DILUÃDO: IMPACTO DO USO DO LICOR HEMICELULÓSICO PARA PRODUÇÃO DE ETANOL. , 0, , .	ENTO	0
125	Using Undigested Biomass Solid Leftovers from the Saccharification Process to Integrate Lignosulfonate Production in a Sugarcane Bagasse Biorefinery. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	4
126	Xylan, Xylooligosaccharides, and Aromatic Structures With Antioxidant Activity Released by Xylanase Treatment of Alkaline-Sulfite–Pretreated Sugarcane Bagasse. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4