Christian C Enz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7166051/publications.pdf

Version: 2024-02-01

304602 302012 2,329 86 22 39 h-index citations g-index papers 87 87 87 1514 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Cryogenic MOS Transistor Model. IEEE Transactions on Electron Devices, 2018, 65, 3617-3625.	1.6	114
2	Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors. IEEE Electron Device Letters, 2020, 41, 276-279.	2.2	108
3	Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K. IEEE Journal of the Electron Devices Society, 2018, 6, 1007-1018.	1.2	107
4	BSIM6: Analog and RF Compact Model for Bulk MOSFET. IEEE Transactions on Electron Devices, 2014, 61, 234-244.	1.6	105
5	Temporal Readout Noise Analysis and Reduction Techniques for Low-Light CMOS Image Sensors. IEEE Transactions on Electron Devices, 2016, 63, 72-78.	1.6	101
6	Energy parsimonious circuit design through probabilistic pruning. , 2011, , .		78
7	Characterization and modeling of 28-nm FDSOI CMOS technology down to cryogenic temperatures. Solid-State Electronics, 2019, 159, 106-115.	0.8	76
8	Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing. , 2017, , .		61
9	Nanoscale MOSFET Modeling: Part 1: The Simplified EKV Model for the Design of Low-Power Analog Circuits. IEEE Solid-State Circuits Magazine, 2017, 9, 26-35.	0.5	54
10	A Sub-0.5 Electron Read Noise VGA Image Sensor in a Standard CMOS Process. IEEE Journal of Solid-State Circuits, 2016, 51, 2180-2191.	3.5	51
11	Physical Model of Low-Temperature to Cryogenic Threshold Voltage in MOSFETs. IEEE Journal of the Electron Devices Society, 2020, 8, 780-788.	1.2	51
12	Review and Benchmarking of Precision-Scalable Multiply-Accumulate Unit Architectures for Embedded Neural-Network Processing. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9, 697-711.	2.7	50
13	Synthesizing Parsimonious Inexact Circuits through Probabilistic Design Techniques. Transactions on Embedded Computing Systems, 2013, 12, 1-26.	2.1	44
14	Characterization of GigaRad Total Ionizing Dose and Annealing Effects on 28-nm Bulk MOSFETs. IEEE Transactions on Nuclear Science, 2017, 64, 2639-2647.	1.2	41
15	A Narrowband Multi-Channel 2.4 GHz MEMS-Based Transceiver. IEEE Journal of Solid-State Circuits, 2009, 44, 228-239.	3.5	39
16	A 2.4-GHz BAW-Based Transceiver for Wireless Body Area Networks. IEEE Transactions on Biomedical Circuits and Systems, 2010, 4, 391-399.	2.7	39
17	RF Small-Signal and Noise Modeling Including Parameter Extraction of Nanoscale MOSFET From Weak to Strong Inversion. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 2173-2184.	2.9	36
18	Cryogenic MOSFET Threshold Voltage Model. , 2019, , .		35

#	Article	IF	Citations
19	lonizing-Radiation Response and Low-Frequency Noise of 28-nm MOSFETs at Ultrahigh Doses. IEEE Transactions on Nuclear Science, 2020, 67, 1302-1311.	1.2	35
20	Nanoscale MOSFET Modeling: Part 2: Using the Inversion Coefficient as the Primary Design Parameter. IEEE Solid-State Circuits Magazine, 2017, 9, 73-81.	0.5	34
21	Approximate 32-bit floating-point unit design with 53% power-area product reduction. , 2016, , .		30
22	Algorithmic methodologies for ultra-efficient inexact architectures for sustaining technology scaling. , 2012, , .		29
23	Influence of Halo Implantations on the Total Ionizing Dose Response of 28-nm pMOSFETs Irradiated to Ultrahigh Doses. IEEE Transactions on Nuclear Science, 2019, 66, 82-90.	1.2	29
24	Inflection Phenomenon in Cryogenic MOSFET Behavior. IEEE Transactions on Electron Devices, 2020, 67, 1357-1360.	1.6	26
25	Characterization and Modeling of Gigarad-TID-Induced Drain Leakage Current of 28-nm Bulk MOSFETs. IEEE Transactions on Nuclear Science, 2019, 66, 38-47.	1.2	25
26	Charge-Based Modeling of Radiation Damage in Symmetric Double-Gate MOSFETs. IEEE Journal of the Electron Devices Society, 2018, 6, 85-94.	1.2	24
27	Compact Modeling of Charge Transfer in Pinned Photodiodes for CMOS Image Sensors. IEEE Transactions on Electron Devices, 2019, 66, 160-168.	1.6	23
28	Modelling and characterization of non-uniform substrate doping. Solid-State Electronics, 1997, 41, 1857-1861.	0.8	22
29	Energy-efficient inexact speculative adder with high performance and accuracy control., 2015,,.		22
30	A 2.6 \$mu\$W Monolithic CMOS Photoplethysmographic (PPG) Sensor Operating With 2 \$mu\$W LED Power for Continuous Health Monitoring. IEEE Transactions on Biomedical Circuits and Systems, 2019, 13, 1243-1253.	2.7	22
31	Survey of Precision-Scalable Multiply-Accumulate Units for Neural-Network Processing. , 2019, , .		22
32	TID Degradation Mechanisms in 16-nm Bulk FinFETs Irradiated to Ultrahigh Doses. IEEE Transactions on Nuclear Science, 2021, 68, 1571-1578.	1.2	21
33	A 0.18 <formula formulatype="inline"><tex notation="TeX">\$mu {m m}\$</tex></formula> Biosensor Front-End Based on <formula formulatype="inline"><tex notation="TeX">\$1/f\$</tex> Noise, Distortion Cancelation and Chopper Stabilization Techniques. IEEE Transactions on Biomedical Circuits and</formula 	2.7	19
34	Systems, 2013, 7, 660-673. Automatic generation of inexact digital circuits by gate-level pruning., 2015,,.		19
35	Noise Reduction Techniques and Scaling Effects towards Photon Counting CMOS Image Sensors. Sensors, 2016, 16, 514.	2.1	19
36	A 4-GHz Low-Power, Multi-User Approximate Zero-IF FM-UWB Transceiver for IoT. IEEE Journal of Solid-State Circuits, 2019, 54, 2462-2474.	3.5	19

#	Article	IF	CITATIONS
37	Source–Drain Partitioning in MOSFET. IEEE Transactions on Electron Devices, 2007, 54, 1384-1393.	1.6	18
38	Design of Approximate Circuits by Fabrication of False Timing Paths: The Carry Cut-Back Adder. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2018, 8, 746-757.	2.7	18
39	Nanowatt Acoustic Inference Sensing Exploiting Nonlinear Analog Feature Extraction. IEEE Journal of Solid-State Circuits, 2021, 56, 3123-3133.	3.5	18
40	Back-gate effects on DC performance and carrier transport in 22 nm FDSOI technology down to cryogenic temperatures. Solid-State Electronics, 2022, 193, 108296.	0.8	16
41	Frequency synthesis for a low-power 2.4 GHz receiver using a BAW oscillator and a relaxation oscillator. Solid-State Circuits Conference, 2008 ESSCIRC 2008 34th European, 2007, , .	0.0	15
42	Noise Modeling in Lateral Nonuniform MOSFET. IEEE Transactions on Electron Devices, 2007, 54, 1994-2001.	1.6	15
43	Comprehensive noise analysis in PPG read-out chains. , 2017, , .		14
44	Designing Energy-Efficient Arithmetic Operators Using Inexact Computing. Journal of Low Power Electronics, 2013, 9, 141-153.	0.6	14
45	A CMOS Image Sensor Pixel Combining Deep Sub-Electron Noise With Wide Dynamic Range. IEEE Electron Device Letters, 2020, 41, 880-883.	2.2	13
46	Ultra low-power MEMS-based radio for wireless sensor networks., 2007,,.		12
47	An Approximate Zero IF FM-UWB Receiver for High Density Wireless Sensor Networks. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 374-385.	2.9	11
48	Parsimonious Circuits for Error-Tolerant Applications through Probabilistic Logic Minimization. Lecture Notes in Computer Science, 2011, , 204-213.	1.0	11
49	Highly energy-efficient and quality-tunable inexact FFT accelerators. , 2014, , .		10
50	Approximate FPGA Implementation of CORDIC for Tactile Data Processing Using Speculative Adders. , 2017, , .		10
51	17.8 A 2.6μW Monolithic CMOS Photoplethysmographic Sensor Operating with 2μW LED Power. , 2019, , .		10
52	Experimental Verification of the Impact of Analog CMS on CIS Readout Noise. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 774-784.	3.5	10
53	A concurrent quadrature sub-sampling mixer for multiband receivers. , 2009, , .		9
54	Charge-Based Distortion Analysis of Nanoscale MOSFETs. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66, 453-462.	3.5	9

#	Article	IF	Citations
55	Generalized Boltzmann relations in semiconductors including band tails. Journal of Applied Physics, 2021, 129, .	1.1	9
56	In-depth Cryogenic Characterization of 22 nm FDSOI Technology for Quantum Computation. , 2021, , .		9
57	DC response, low-frequency noise, and TID-induced mechanisms in 16-nm FinFETs for high-energy physics experiments. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022, 1033, 166727.	0.7	9
58	Improving energy gains ofinexactDSP hardware throughreciprocative error compensation., 2013,,.		8
59	An Ultra-Low Power PPG and mm-Resolution ToF PPD-Based CMOS Chip Towards All-in-One Photonic Sensors. IEEE Sensors Journal, 2019, 19, 11858-11866.	2.4	8
60	AC/DC Ratio Enhancement in Photoplethysmography Using a Pinned Photodiode. IEEE Electron Device Letters, 2019, 40, 1828-1831.	2.2	8
61	Nanoscale MOSFET modeling for low-power RF design using the inversion coefficient. , 2015, , .		7
62	A generalized EKV charge-based MOSFET model including oxide and interface traps. Solid-State Electronics, 2021, 177, 107951.	0.8	7
63	Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing., 2021,,.		7
64	Influence of Fin and Finger Number on TID Degradation of 16-nm Bulk FinFETs Irradiated to Ultrahigh Doses. IEEE Transactions on Nuclear Science, 2022, 69, 307-313.	1.2	7
65	Design methodology for low power RF LNA based on the figure of merit and the inversion coefficient. , 2014, , .		6
66	Energy-efficient digital design through inexact and approximate arithmetic circuits. , 2015, , .		6
67	Analysis of power consumption in LC oscillators based on the inversion coefficient. , 2017, , .		6
68	Building Blocks for an Ultra Low-Power MEMS-based Radio. , 2007, , .		5
69	Why design reliable chips when faulty ones are even better. , 2013, , .		5
70	A 2.4 GHz MEMS based sub-sampling receiver front-end with low power channel selection filtering at RF. , 2012, , .		4
71	An Accurate kTC Noise Analysis of CDS Circuits. , 2018, , .		4
72	Noise canceling chopper stabilized front-end for electrochemical biosensors with improved dynamic range. , 2012 , , .		3

#	Article	IF	CITATIONS
73	Design methodology for low power RF LNA based on the figure of merit and the inversion coefficient. Analog Integrated Circuits and Signal Processing, 2016, 87, 275-287.	0.9	3
74	Power-Optimized Digitally Controlled Oscillator in 28-nm CMOS for Low-Power FMCW Radars. IEEE Microwave and Wireless Components Letters, 2021, 31, 965-968.	2.0	3
75	Cryogenic Characterization of 16 nm FinFET Technology for Quantum Computing. , 2021, , .		3
76	Increased Device Variability Induced by Total Ionizing Dose in 16-nm Bulk nFinFETs. IEEE Transactions on Nuclear Science, 2022, 69, 1437-1443.	1.2	3
77	Analysis of a novel BAW-based power amplifier. , 2009, , .		2
78	A 290µA, 3.2MHz 4-bit phase ADC for constant envelope, ultra-low power radio., 2010,,.		2
79	A low power 2.4 GHz front end with MEMS lattice based channel filtering at RF., 2012,,.		2
80	A novel complex G _m -C IF sub-sampling mixer., 2009,,.		1
81	Analysis of ultralow-power asynchronous ADCs. , 2010, , .		1
82	MEMS-based all-digital frequency synthesis for ultralow-power radio for WBAN and WSN applications. , 2011, , .		1
83	28-nm Bulk and FDSOI Cryogenic MOSFET : (Invited Paper). , 2018, , .		1
84	A 49 μW 6 th -Order Chebyshev SSF-Based Low-Pass Analog Filter for IEEE 802.11ax., 2020,,.		1
85	TD: Trends in Communication Circuits & Systems. , 2008, , .		0
86	A MEMS-based 2.4-GHz sub-sampling RF front-end for advanced healthcare applications. , 2011, , .		O